首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We report a dispersion slope equalizer on a planar lightwave circuit for wavelength division multiplexing (WDM) transmission. This device consists of an array of lattice-formed equalizers with different compensation values fabricated on one wafer and arrayed-waveguide gratings for wavelength multi/demultiplexing. We describe its configuration, operational principle, parameter design, fabrication, and measured characteristics in detail. N/spl times/20 and N/spl times/40 Gb/s slope equalizers were fabricated and their characteristics agreed well with designed values. We also report a reduction in the bias electrical power needed for thermooptic phase shifters in the equalizer array that we realized by employing a phase trimming technique normally used for optical switches.  相似文献   

2.
We describe an experimental realization of ultra-long-haul (ULH) networks with dynamically reconfigurable transparent optical add-drop multiplexers (OADMs) and optical cross-connects (OXCs). A simple new approach to dispersion management in ULH dense-wavelength-division-multiplexing (DWDM) transparent optical networks is proposed and implemented, which enables excellent transmission performance while avoiding dispersion compensation on a connection-by-connection basis. We demonstrate "broadcast-and-select" node architectures that take full advantage of this method. Our implementation of signal leveling ensures minimum variations of path-averaged power among the wavelength-division-multiplexing (WDM) channels between the dynamic gain-equalizing nodes and results in uniform nonlinear and spontaneous-emission penalties across the WDM spectrum. We achieve 80/spl times/10.7-Gb/s DWDM networking over 4160 km (52 spans/spl times/80 km each) of all-Raman-amplified symmetric dispersion-managed fiber and 13 concatenated OADMs or 320/spl times/320 wavelength-port OXCs with 320-km node spacing. The WDM channels use 50-GHz grid in C band and the simple nonreturn-to-zero (NRZ) modulation format. The measured Q values exhibit more than a 1.8-dB margin over the forward-error correction threshold for 10/sup -15/ bit-error-rate operation. We compare these results with point-to-point transmission of 80/spl times/10-Gb/s NRZ WDM signals over 4160 km without OADM/OXC and provide detailed characterization of penalties due to optical signal-to-noise-ratio degradation, filter concatenation, and crosstalk.  相似文献   

3.
We have analyzed the transmission performance of 8/spl times/10 Gb/s wavelength division multiplexing (WDM) signals due to crosstalk in cascaded conventional semiconductor optical amplifiers (SOAs). Using two different methods, the crosstalk over the whole gain bandwidth in SOAs is calculated to be 2-5 dB lower for the positive detuning. Then, transmission performance of 8/spl times/10 Gb/s WDM signals up to 6/spl times/40 km span in terms of receiver sensitivity is estimated over various transmission distances using cascaded SOAs for the positive signal wavelength displacement of 30, 40, and 50 nm. Especially for 50 nm detuning, transmission performances with and without using a reservoir channel are similar to each other. Our results suggest that SOAs can be used as an optical amplifier for displacement larger than 50 nm without using the reservoir channel.  相似文献   

4.
This paper presents both theoretical and experimental studies carried on wavelength-division multiplexing (WDM) networks with arbitrary (mesh) topology that provide optical circuits with differentiated reliability (DiR). Reliability is obtained by means of a modified shared path protection (SPP) switching scheme-here referred to as SPP-DiR. As explained in the paper, SPP-DiR networks provide multiple degrees of circuit reliability that satisfy client-specific reliability requirements in a cost-effective way. The theoretical study first defines the problem of optimally designing SPP-DiR WDM networks. It then presents a time-efficient suboptimal algorithm that determines the routing and the reliability degree of each demand in the given traffic matrix by applying both the conventional SPP and the SPP-DiR scheme. When compared to dedicated path protection switching, results obtained for the pan-European network using the proposed algorithm indicate cost reductions of about 16% when SPP is applied, and up to 34% when SPP-DiR is applied. The experimental study describes the /spl Omega/ testbed-a WDM optical circuit-switched mesh network with an IP control plane-which is believed to be the first testbed ever built that makes use of the SPP-DiR scheme. Experimental results performed on the /spl Omega/ testbed report restoration times of the optical circuits-disrupted by a fiber fault-that are few tens of milliseconds.  相似文献   

5.
We have theoretically investigated 8 /spl times/ 10-Gb/s wavelength-division multiplexing (WDM) signal transmission characteristics based on semiconductor optical amplifiers (SOAs) with equalized gain using discrete Raman amplification (DRA). Gain equalization and low noise figures have been obtained by adjusting the backward Raman pumping power and wavelength at a dispersion compensating fiber (DCF) for each span. Bit-error-rate characteristics were calculated for 8 /spl times/ 10-Gb/s WDM signal transmission over 6 /spl times/ 40-km single-mode fiber (SMF) + DCF links with gain-equalized SOAs using DRAs at DCF. Approximately a 2.5-dB improvement of the receiver sensitivity was achieved by using SOAs and DRAs with optimized Raman pumping. One can easily upgrade the transmission length of a link based on SOAs with an appropriate backward pump laser at each DCF.  相似文献   

6.
Amplification of WDM signals in fiber-based optical parametric amplifiers   总被引:1,自引:0,他引:1  
We demonstrate for the first time, experimentally, the performance of fiber-based optical parametric amplifiers in wavelength-division-multiplexed (WDM) applications. Both a 3 /spl times/ 10 Gb/s and a commercial 7 /spl times/ 2.5 Gb/s WDM system are investigated together with the parametric amplifier. Limitations due to pump depletion and four-wave mixing are quantified. Measurements showing the performance in terms of power penalty and gain versus input-output signal power are presented.  相似文献   

7.
In some deployments of all-optical networks, it is necessary to concentrate the lightpaths from some fibers to fewer fibers. An N/spl times/M lightpath concentrator is an optical component for this purpose, and it concentrates the lightpaths from N incoming fibers to M outgoing fibers. In this paper, three designs of N/spl times/M lightpath concentrators are proposed. The first design is a generalization of optical crossconnects, and it requires M/spl times/M optical switches. The second design incorporates the concept of partial concentration so that it requires only m/spl times/m optical switches (where m相似文献   

8.
We study driving conditions to improve the extinction ratios in 2/spl times/2 and 1/spl times/2 all-optical switches based on semiconductor optical amplifiers in Mach-Zehnder configuration. In 2/spl times/2 switches, the optimization of the relative phases of both arms of the interferometer together with the introduction of an optical push-pull lead to enhanced and symmetrical extinctions. In 1/spl times/2 switches, perfect extinctions can theoretically be obtained by adapting the splitting ratios of the input and output couplers to the saturation behavior of the amplifiers.  相似文献   

9.
54/spl times/42.7 Gbit/s L and U-band WDM signal transmission has been experimentally demonstrated. In-line hybrid optical amplifiers consisting of L-band EDFAs and U-band distributed Raman amplifiers enable 2.2 Tbit/s WDM signals to be transmitted over three spans of 75 km DSF.  相似文献   

10.
Two types of expanded semiconductor optical amplifier gate switches (front 3/spl times/4 to 32/spl times/32) are analyzed numerically with respect to input power dynamic ranges. The dependences of the dynamic range on switch size, amplifier placement, and gain are studied. It is concluded that a large integrated switch is preferred over a large switch constructed from fiber-optic couplers and integrated 4/spl times/4 switches.  相似文献   

11.
This paper reports on a network dimensioning analysis of N /spl times/ 160-Gb/s wavelength-division-multiplexed (WDM) networks based on the optical time-division-multiplexing (OTDM) technique. The need for different transmission and networking functions based on innovative circuit-switched scenarios for optical core networks is quantified, and the economical interest of such high-wavelength channel bit rates in the chosen scenarios is evaluated.  相似文献   

12.
Photonic gateway, which performs the bilateral conversion and reconversion of multiplexing format, is proposed. 40-Gb/s (4/spl times/10 Gb/s) optical code-division multiplexing (OCDM)-to-wavelength-division multiplexing (WDM) conversion and WDM-to-OCDM reconversion are experimentally demonstrated for the first time. The experimental scheme is based upon ultrafast photonic processing both in the time domain and frequency domain, namely, optical encoding/decoding along with optical time-gating in the time domain and supercontinuum generation followed by spectrum slicing in the frequency domain. Thus, the possibility of ultra-high-speed operation features this photonic conversion scheme in the future photonic networks.  相似文献   

13.
Architectures and technologies for high-speed optical data networks   总被引:2,自引:0,他引:2  
Current optical networks are migrating to wavelength division multiplexing (WDM)-based fiber transport between traditional electronic multiplexers/demultiplexers, routers, and switches. Passive optical add-drop WDM networks have emerged but an optical data network that makes full use of the technologies of dynamic optical routing and switching exists only in experimental test-beds. This paper discusses architecture and technology issues for the design of high performance optical data networks with two classes of technologies, WDM and time division multiplexing (TDM). The WDM network architecture presented stresses WDM aware Internet protocol (IP), taking full advantage of optical reconfiguration, optical protection and restoration, traffic grooming to minimize electronics costs, and optical flow-switching for large transactions. Special attention is paid to the access network where innovative approaches to architecture may have a significant cost benefit. In the more distant future, ultrahigh-speed optical TDM networks, operating at single stream data rates of 100 Gb/s, may offer unique advantages over WDM networks. These advantages may include the ability to provide integrated services to high-end users, multiple quality-of-service (QoS) levels, and truly flexible bandwidth-on-demand. The paper gives an overview of an ultrahigh-speed TDM network architecture and describes recent key technology developments such as high-speed sources, switches, buffers, and rate converters  相似文献   

14.
We describe a compact free-space photonic-switching module that uses micro-beam optical interconnections based on stacked planar optics and exciton absorption reflection switch (EARS) arrays. The switching module has two-dimensional fiber array pigtails and a two-stage, 16-input, 16-output structure (four sets of 4/spl times/4 switches). The microbeam optical interconnections can provide a compact switching module (approximately 30/spl times/90/spl times/22 mm [60 cc]). A relay lens array inserted between stages eliminates beam spreading in the switch and decreases the coupling loss and crosstalk of interconnections. Two-stage switching at a data transmission rate of 4 Mbit/s is demonstrated.  相似文献   

15.
Using a novel design approach, high-performance large-port-count switches based on cascaded multimode interference (MMI) couplers are shown to be feasible in low-index-contrast materials. This approach combines the transfer matrix method, optimization of the MMI dimensions, and mode propagation analysis (MPA) for calculation of phase shifts. 1/spl times/4, 1/spl times/8, 1/spl times/16, and 1/spl times/32 switches are designed, with insertion losses of 1 dB and crosstalk as low as -31.7 dB. Also, it is shown that this approach can balance the losses for different switch states.  相似文献   

16.
A wavelength-division-multiplexing (WDM) access system can be used in two basic ways: user multiplexing, which assigns a wavelength to each user, and service multiplexing, which assigns a wavelength to each service. In current designs for service multiplexing, each optical network unit (ONU) must have a demultiplexer that can select any wavelength. This paper proposes a new WDM access system that uses one demultiplexer shared by many ONUs to offer optical-distribution access services. This system realizes significant cost reductions due to its passive optical network (PON) architecture, high capacity due to its WDM technology, and easy wiring through the use of multimode fiber (MMF). As one of the realization approaches of the shared demultiplexer, we explain the principle and configuration of a shared demultiplexer based on diffraction theory, and present theoretical and experimental analyses of a prototype 4/spl times/(4/spl times/4) shared demultiplexer whose configuration is based on Littrow mounting. Experimental transmission performances demonstrate the feasibility of the proposed WDM access system.  相似文献   

17.
We propose a novel grating-in-etalon device for wavelength division multiplexing (WDM) applications. After presenting the device concept and a specific design of the device configuration, we report a first proof-of-concept demonstration of a 1/spl times/40 polarization insensitive WDM device in LiNbO/sub 3/.  相似文献   

18.
For building an optical access network, we propose some new hybrid WDM/TDM passive optical network (PON) architectures that use wavelength selective switches (WSSs) at the remote node to improve flexibility, data security and power budget. Through simulations we demonstrate that the switching capabilities of a WSS can provide additional gains in terms of wavelength usage by a better statistical multiplexing. Several WSS-based hybrid WDM/TDM PON variants are proposed and assessed. These architectures are also compared with the more commonly used hybrid WDM/TDM PONs consisting of power splitters and/or arrayed wavelength gratings (AWGs), in terms of cost and power budget.  相似文献   

19.
GaAs photoconductive switches have been integrated with two parallel 4-bit CMOS analog-to-digital (A/D) converter channels to demonstrate the time-interleaved sampling of wideband signals. The picosecond sampling aperture provided by low-temperature-grown-GaAs metal-semiconductor-metal switches, in combination with low-jitter short-pulse lasers, enables the optically-triggered sampling of electrical signals with tens of gigahertz bandwidth at low to medium resolution. A pair of parallel sampling paths, one for sampling and the second for feedthrough cancellation, generate a differential held signal that is quantized by a low-input capacitance, high-speed flash A/D converter. Dynamic offset averaging is employed to improve converter linearity. An experimental time-interleaved two-channel A/D converter provides about 3.5 effective bits of resolution for inputs up to 40 GHz when tested at an optically-triggered sampling rate of 160 MHz. The sampling rate was limited by the available optical source. Each A/D converter channel operates up to a 640-MHz conversion rate, dissipates 70 mW of power, and occupies an area of 150 /spl mu/m /spl times/ 450 /spl mu/m in a 2.5-V, 0.25-/spl mu/m CMOS technology.  相似文献   

20.
A reconfigurable 2 /spl times/ 2 add-drop fiber-optic switch structure is proposed by incorporating the independent mechanical control and alignment of an off-the-shelf thin-film filter with a reflective optical element. Cascading several 2 /spl times/ 2 add-drop switches gives a low-cost polarization-independent wavelength routing system with the limitation in optical loss that can be compensated by using optical amplifiers. The experimental result indicates a measured average optical loss of <1.30 dB at the center wavelength. In addition, the measured optical coherent crosstalk values at the center wavelength are -15 and -22 dB when the thin-film filter and the mirror are in the optical path, respectively. A very low polarization-dependent loss of <0.07 dB is also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号