首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we report on a novel family of monodisperse thermo‐sensitive core–shell hydrogel microspheres that is featured with high monodispersity and positively thermo‐responsive volume phase transition characteristics with tunable swelling kinetics, i.e., the particle swelling is induced by an increase rather than a decrease in temperature. The microspheres were fabricated in a three‐step process. In the first step, monodisperse poly(acrylamide‐co‐styrene) seeds were prepared by emulsifier‐free emulsion polymerization. In the second step, poly(acrylamide) or poly[acrylamide‐co‐(butyl methacrylate)] shells were fabricated on the microsphere seeds by free radical polymerization. In the third step, the core–shell microspheres with poly‐ (acrylamide)/poly(acrylic acid) based interpenetrating polymer network (IPN) shells were finished by a method of sequential IPN synthesis. The proposed monodisperse core–shell microspheres provide a new mode of the phase transition behavior for thermo‐sensitive “smart” or “intelligent” monodisperse micro‐actuators that is highly attractive for targeting drug delivery systems, chemical separations, sensors, and so on.  相似文献   

2.
An efficient visible‐light active photocatalyst of porous CrOx–Ti1.83O4 nanohybrid with a 1:1 type ordered heterostructure is synthesized through a hybridization between a chromia cluster and exfoliated titanate nanosheets. The present nanohybrids are found to have a large surface area (ca. 250–310 m2 g–1) and an intense absorption of visible light, ascribable, respectively, to the formation of a porous structure and the hybridization of titanate with narrow‐bandgap chromium oxide. After the calcination at 400 °C, the nanohybrid shows an enhanced photocatalytic activity to effectively decompose organic compounds under the irradiation of visible light (λ > 420 nm). The present study highlights the exfoliation–restacking route as a very powerful way to develop efficient visible‐light‐harvesting photocatalysts with excellent thermal stability.  相似文献   

3.
Light‐emitting diodes exhibiting efficient pure‐white‐light electroluminescence have been successfully developed by using a single polymer: polyfluorene derivatives with 1,8‐naphthalimide chromophores chemically doped onto the polyfluorene backbones. By adjusting the emission wavelength of the 1,8‐naphthalimide components and optimizing the relative content of 1,8‐naphthalimide derivatives in the resulting polymers, white‐light electroluminescence from a single polymer, as opposed to a polymer blend, has been obtained in a device with a configuration of indium tin oxide/poly(3,4‐ethylenedioxythiophene)(50 nm)/polymer(80 nm)/Ca(10 nm)/Al(100 nm). The device exhibits Commission Internationale de l'Eclairage coordinates of (0.32,0.36), a maximum brightness of 11 900 cd m–2, a current efficiency of 3.8 cd A–1, a power efficiency of 2.0 lm W–1, an external quantum efficiency of 1.50 %, and quite stable color coordinates at different driving voltages, even at high luminances of over 5000 cd m–2.  相似文献   

4.
Halogen bonding is arguably the least exploited among the many non‐covalent interactions used in dictating molecular self‐assembly. However, its directionality renders it unique compared to ubiquitous hydrogen bonding. Here, the role of this directionality in controlling the performance of light‐responsive supramolecular polymers is highlighted. In particular, it is shown that light‐induced surface patterning, a unique phenomenon occurring in azobenzene‐containing polymers, is more efficient in halogen‐bonded polymer–azobenzene complexes than in the analogous hydrogen‐bonded complexes. A systematic study is performed on a series of azo dyes containing different halogen or hydrogen bonding donor moieties, complexed to poly(4‐vinylpyridine) backbone. Through single‐atom substitution of the bond‐donor, control of both the strength and the nature of the noncovalent interaction between the azobenzene units and the polymer backbone is achieved. Importantly, such substitution does not significantly alter the electronic properties of the azobenzene units, hence providing us with unique tools in studying the structure–performance relationships in the light‐induced surface deformation process. The results represent the first demonstration of light‐responsive halogen‐bonded polymer systems and also highlight the remarkable potential of halogen bonding in fundamental studies of photoresponsive azobenzene‐containing polymers.  相似文献   

5.
Four single polymers with two kinds of attachment of orange chromophore to blue polymer host for white electroluminescence (EL) were designed. The effect of the side‐chain attachment and main‐chain attachment on the EL efficiencies of the resulting polymers was compared. The side‐chain‐type single polymers are found to exhibit more efficient white EL than that of the main‐chain‐type single polymers. Based on the side‐chain‐type white single polymer with 4‐(4‐alkyloxy‐phenyl)‐7‐(4‐diphenylamino‐phenyl)‐2,1,3‐benzothiadiazoles as the orange‐dopant unit and polyfluorene as the blue polymer host, white EL with simultaneous orange (λmax = 545 nm) and blue emission (λmax = 432 nm/460 nm) is realised. A single‐layer device (indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Ca/Al) made of these polymers emits white light with the Commission Internationale de l'Éclairage coordinates of (0.30,0.40), possesses a turn‐on voltage of 3.5 V, luminous efficiency of 10.66 cd A–1, power efficiency of 6.68 lm W–1, and a maximum brightness of 21 240 cd m–2.  相似文献   

6.
This study reveals the mechanism of the dual‐emission properties for asymmetrical diphenylsulfone and diphenylketone derivatives. A series of asymmetrical diphenylketone and diphenylsulfone derivatives with dual‐emission properties are designed and synthesized. By single crystal structure analyses, various photophysical studies, and 2D 1H–1H NOSEY NMR studies, the lower energy emission bands in the dual‐emission spectra are successfully assigned to hydrogen‐bonding‐assisted intermolecular charge transfer emission. The emission properties of these compounds can easily be tuned in both solid state and solution state by destroying or strengthening the intermolecular hydrogen bonding. In addition, thermally activated delayed fluorescence characteristics for the intermolecular charge transfer emissions are also observed. The control of the intermolecular and intramolecular charge transfers serves as the basis for the generation of the white‐light emission. For compound CPzPO, nearly pure white‐light emission with CIE coordinates of (0.31, 0.32) is easily achieved by precipitation from dichloromethane and hexane mixed solvent system. These results clearly give an insight into the dual‐emission properties and provide a rational strategy for the design and synthesis of single‐component white‐light‐emitting materials and mechanoresponsive light‐emitting materials.  相似文献   

7.
Here, a self‐powered optical switch (OS) composed of a surface‐etched single‐electrode triboelectric nanogenerator (TENG) and a polymer‐dispersed liquid crystal (PDLC) film is reported. The working principle of the developed OS is that the liquid crystal alignment can be driven by triboelectrification‐generated voltage, inducing the PDLC film to rapidly switch its initial translucent state to an instantaneous transparent state. An output voltage of 360 V is generated upon the PDLC film when a nitrile rubber film contacts with the TENG at an area of 25 cm2 and a velocity of 0.4 m s?1. As such, a wide dimming range with the relative transmitted light intensity from 0.05 to 0.85 can be achieved for the OS. Enabled by the unique mechano‐electro‐optical reaction, the effects of a series of structural parameters on the performance of the OS are methodically studied. Particularly, through integrating the OS with a visible‐light‐operated signal‐processing circuit, a complete wireless sensing system with a fully power‐free sensing node is developed. The paradigms of hand touching and foot stepping triggered wireless alarms are demonstrated, explicitly showing great potential for the system in many possible interactive human–machine interface applications, such as surveillance, security systems, remote operation, and automatic control.  相似文献   

8.
Fabricating electronic devices require integrating metallic conductors and polymeric insulators in complex structures. Current metal‐patterning methods such as evaporation and laser sintering require vacuum, multistep processes, and high temperature during sintering or postannealing to achieve desirable electrical conductivity, which damages low‐temperature polymer substrates. Here reports a facile ecofriendly room‐temperature metal printing paradigm using visible‐light projection lithography. With a particle‐free reactive silver ink, photoinduced redox reaction occurs to form metallic silver within designed illuminated regions through a digital mask on substrate with insignificant temperature change (<4 °C). The patterns exhibit remarkably high conductivity achievable at room temperature (2.4 × 107 S m?1, ≈40% of bulk silver conductivity) after simple room‐temperature chemical annealing for 1–2 s. The finest silver trace produced reaches 15 µm. Neither extra thermal energy input nor physical mask is required for the entire fabrication process. Metal patterns were printed on various substrates, including polyethylene terephthalate, polydimethylsiloxane, polyimide, Scotch tape, print paper, Si wafer, glass coverslip, and polystyrene. By changing inks, this paradigm can be extended to print various metals and metal–polymer hybrid structures. This method greatly simplifies the metal‐patterning process and expands printability and substrate materials, showing huge potential in fabricating microelectronics with one system.  相似文献   

9.
Understanding and controlling 3D nanocrystal self‐assembly is a fundamental challenge in materials science. Assembly enables the unique optical and electronic properties of nanocrystals to be exploited in macroscopic materials, and also opens up the possibility to couple the optical response of nanocrystals to the optical modes of the superlattice. To date, assembly of such nanocrystal superlattices (NCSL) has focussed on fixed, close packed structures with particle separations of just 1–3 nm. To achieve highly crystalline structures with tunable optical response, the nanocrystal interparticle separation needs to be precise and easily variable but >50 nm. Here, we show the preparation of nanocrystal superlattices with spacings of 50–500 nm assembled from gold‐poly‐N‐isopropylacrylamide core‐shell particles and the characterization of their fascinating diffraction behavior by means of UV‐vis spectroscopy. These nanocrystal superlattices exhibit pronounced diffraction in the visible (440‐560 nm) with peak half‐widths of the order of 10 nm. The position of the Bragg peak is simply tuned by adjusting the particle volume fraction. Due to the thermoresponsive nature of the polymer shell, temperature is used to initiate crystallization or melting of the superlattice. Heating and cooling cycles cause highly reversible melting/recrystallization in less than a minute.  相似文献   

10.
In this work, room‐temperature‐operated ultrasensitive solution‐processed perovskite photodetectors (PDs) with near infrared (NIR) photoresponse are reported. In order to enable perovskite PDs possessing extended NIR photoresponse, novel n‐type low bandgap conjugated polymer, poly[(N,N′‐bis(2‐octyldodecyl)‐1,4,5,8‐naphthalene diimide‐2,6‐diyl) (2,5‐dioctyl‐3,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione‐5,5′‐diyl)] (NDI‐DPP), which has strong absorption in the NIR region, is developed and then employed in perovskite PDs. By the formation of type II band alignment between NDI‐DPP with single‐wall carbon nanotubes (SWCNTs), the NIR absorption of NDI‐DPP is exploited, which contributes to the NIR photoresponse for the perovskite PDs, where perovskite is incorporated with NDI‐DPP and SWCNTs as well. In addition, SWCNTs incorporated with perovskite active layer can offer the percolation pathways for high charge‐carrier mobility, which tremendously boosts the charge transfer in the photoactive layer, and consequently improves the photocurrent in the visible region. As a result, the perovskite PDs exhibit the responsivities of ≈400 and ≈150 mA W?1 and the detectivities of over 6 × 1012 Jones (1 Jones = 1 cm Hz1/2 W?1) and over 2 × 1012 Jones in the visible and NIR regions, respectively. This work reports the development of perovskite PDs with NIR photoresponse, which is terrifically beneficial for the practical applications of perovskite PDs.  相似文献   

11.
A facile synthesis method for the heterostructures of single‐walled carbon nanotubes (SWCNTs) and few‐layer MoS2 is reported. The heterostructures are realized by in situ chemical vapor deposition of MoS2 on individual SWCNTs. Field effect transistors based on the heterostructures display different transfer characteristics depending on the formation of MoS2 conduction channels along SWCNTs. Under light illumination, negative photoresponse originating from charge transfer from MoS2 to SWCNT is observed while positive photoresponse is observed in MoS2 conduction channels, leading to ambipolar photoresponse in devices with both SWCNT and MoS2 channels. The heterostructure phototransistor, for negative photoresponse, exhibits high responsivity (100–1000 AW?1) at low bias voltages (0.1 V) in the visible spectrum (500–700 nm) by combining high mobility conduction channel (SWCNT) with efficient light absorber (MoS2).  相似文献   

12.
The synthesis and properties of well‐defined core–shell type fluorescent metal‐chelating polymer nanoparticles NP, in the 15 nm diameter range, with a fluorophore (9,10‐diphenylanthracene: DPA) entrapped in the particle core and a selective ligand (1,4,8,11‐tetraazacyclotetradecane: Cyclam), grafted onto the surface are presented. NPs with different number of dye‐per‐particle are readily obtained by entrapment of the fluorophore within the polymer core. The ligand‐coated NPs exhibit a high affinity for Cu2+ ions in aqueous solution and quenching of the DPA fluorescence is observed upon binding of copper. The quenching of fluorescence arises through energy transfer (FRET) from the dye to the copper‐cyclam complexes that form at the NP surface with an operating distance (d) in the 2 nm range. A simple core–shell model accounts for the steady‐state and time‐resolved fluorescence titration experiments: dye molecules located in the outer sphere (thickness d) of the NPs are quenched while the fluorescence of dyes embedded more deeply is not affected by the binding of copper ions. The observed high quenching efficiency (60–65 %), which is tightly correlated to the volumic and microstructural features of the NPs, shed light on the enhanced accessibility inherent in nano‐sized templates. The response towards different metal ions was investigated and this confirmed the selectivity of the nanoparticle template‐assembled sensor for cupric ions.  相似文献   

13.
Polymer‐controlled crystallization of calcium carbonate crystals in solution by a gas diffusion method has been carried out in the presence of poly(sodium 4‐styrene sulfonate‐coN‐isopropylacrylamide) (PSS‐co‐PNIPAAM), and for the first time all three anhydrous polymorphs, calcite, vaterite, and aragonite could be selectively produced with a single additive. The selective polymorph synthesis can be nicely adjusted simply by concentration variations of polymer and calcium ions in the present reaction system. The simplicity of the system reveals the influence of Ca2+ and polymer concentration on the nucleation and crystal growth of CaCO3 via the balance between thermodynamic and kinetic reaction control. A single mechanistic framework employing particle mediated as well as ion mediated crystallization for polymorph control is proposed.  相似文献   

14.
A new type of light‐switchable “smart” single‐walled carbon nanotube (SWNTs) is developed by the reversible host–guest interaction between azobenzene‐terminal PEO (AzoPEO) and pyrene‐labeled host attached on the sidewalls of nanotubes via π–π stacking. The SWNTs hybrids not only are well dispersed in pure water, but also exhibit switchable dispersion/aggregation states upon the alternate irradiation of UV and visible light. Moreover, the SWNTs hybrids dispersion is preliminarily used as coating fluid to form transparent conductive films. The dispersant AzoPEO is removed by the contamination‐free UV treatment, decreasing the resistance of the films. This kind of light‐switchable SWNTs hybrids, possessing a ‘‘green’’ trigger and intact structure of the nanotube, may find potential applications in sensor of biomedicines, device fabrication, etc. Additionally, such a reversible host–guest interaction system may open up the possibility to control the dispersion state of SWNTs by other common polymers.  相似文献   

15.
The fabrication of bowl or concave particles with “asymmetric centers” has drawn considerable attentions, in which multiple scattering occurs inside the particles and the ability of light scattering is distinctly enhanced. However, the limited variety of templates, the uncontrollable dimensions such as the size of concavity and the complex growth process have posed serious limitations to the reproducible construction of concave particles with desired geometries and their light‐trapping properties. Herein, a “temperature‐induced stacking” strategy is proposed to create controllable concavity Cu2O spheres for the first time. Different sizes of F68 micelles can be formed through aggregation under different reaction temperatures, which can serve as soft template to tailor concave geometries of Cu2O spheres. The as‐prepared Cu2O concave sphere (CS) can serve as single‐particle (SP) surface‐enhanced Raman scattering (SERS) substrate for highly repeatable and consistent Raman spectra. The unique cavity of Cu2O CS entraps light effectively, which also enhances the scattering length owing to multiple light scattering. Combined with slightly increased surface area and charge‐transfer process, Cu2O CS exhibits remarkable single‐particle SERS performance, with an ultralow low detection limit (2 × 10?8 mol L?1) and metal comparable enhancement factor (2.8 × 105).  相似文献   

16.
Here a method is presented for the temperature‐switchable assembly of viral particles into large hierarchical complexes. Dual‐functional diblock copolymers consisting of poly(diethyleneglycol methyl ether methacry­late) (poly(DEGMA)) and poly((2‐dimethylamino)ethyl methacrylate) (poly(DMAEMA)) blocks self‐assemble electrostatically with cowpea chlorotic mottle virus (CCMV) particles into micrometer‐sized objects as a function of temperature. The poly(DMAEMA) block carries a positive charge, which can interact electrostatically with the negatively charged outer surface of the CCMV capsid. When the solution temperature is increased above 40 °C, to cross the cloud point temperature (Tcp) of the DEGMA block, the polymer chains collapse on the surface of the virus particle, which makes them partially hydrophobic, and consequently causes the formation of large hierarchical assemblies. Disassembly of the virus–polymer complexes can be induced by reducing the solution temperature below the Tcp, which allows the poly(DEGMA) blocks to rehydrate and free virus particles to be released. The assembly process is fully reversible and can sustain several heating–cooling cycles. Importantly, this method relies on reversible supramolecular interactions and therefore avoids the irreversible covalent modification of the particle surface. This study illustrates the potential of temperature‐responsive polymers for controlled binding and releasing of virus particles.  相似文献   

17.
Organic pigments are important crystalline substances, and their properties and applications rely on size and shape control. Pigment Yellow 181 (PY181) is an industrial azo pigment that is light and weatherfast and suitable for high temperature processing. One disadvantage is its needle‐like shape in the default β‐phase, which makes the pigment difficult to process in industry, e.g., in polymer melts, where a spherical structure would be ideal. Here, we show for the first time, that polymer‐induced liquid precursor structures can be formed even in association to a chemical reaction. Furthermore, it is demonstrated that biomineralization principles can be exploited for the generation of advanced functional materials, such as pigments with novel complex morphology and different properties. Stable PY181 microspheres of nanoplates in the β‐phase were obtained in mixed solvents of water and isopropanol by direct azo coupling under the directing influence of a designed copolymer additive aminobenzoylaminobenzamide‐acetoacetyl‐poly(ethylene imine)‐block‐poly(ethylene glycol) (ABABA‐acetoacetyl‐PEI‐b‐PEG).  相似文献   

18.
The design, synthesis, and characterization of a hierarchically ordered composite whose structure and optical properties can be reversibly switched by adjustment of solvent conditions are described. Solvent‐induced swelling and de‐swelling is shown to provide control over the internal packing arrangement and hence, optical properties of in situ synthesized metal nanoparticles. Specifically, a gold‐nanoparticle‐containing ionic‐liquid‐derived polymer is synthesized in a single step by UV irradiation of a metal‐ion‐precursor‐doped, self‐assembled ionic liquid gel, 1‐decyl‐3‐vinylimidazolium chloride. Small‐angle X‐ray scattering (SAXS) studies indicate that in the de‐swollen state, the freestanding polymer adopts a perforated lamellar structure. Optical spectroscopy of the dried composite reveals plasmon resonances positioned in the near‐IR. Strong particle–particle interactions arise from matrix‐promoted formation of aggregated 1D clusters or chains of gold nanoparticles. Upon swelling in alcohol, the composite undergoes a structural conversion to a disordered structure, which is accompanied by a color change from purple to pale pink and a shift in the surface plasmon resonance to 527 nm, consistent with isolated, non‐interacting particles. These results demonstrate the far‐field tuning of the plasmonic spectrum of gold nanoparticles by solvent‐mediated changes in its encapsulating matrix, offering a straightforward, low‐cost strategy for the fabrication of nanophotonic materials.  相似文献   

19.
Monolayer 2D transition metal dichalcogenides (TMDCs) have shown great promise for optoelectronic applications due to their direct bandgaps and unique physical properties. In particular, they can possess photoluminescence quantum yields (PL QY) approaching unity at the ultimate thickness limit, making their application in light‐emitting devices highly promising. Here, large‐area WS2 grown via chemical vapor deposition is synthesized and characterized for visible (red) light‐emitting devices. Detail optical characterization of the synthesized films is performed, which show peak PL QY as high as 12%. Electrically pumped emission from the synthetic WS2 is achieved utilizing a transient‐mode electroluminescence device structure, which consists of a single metal–semiconductor contact and alternating gate fields to achieve bipolar emission. Utilizing this aforementioned structure, a centimeter‐scale ( ≈ 0.5 cm2) visible (640 nm) display is demonstrated, fabricated using TMDCs to showcase the potential of this material system for display applications.  相似文献   

20.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号