首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Solid‐state magnetic refrigeration is a high‐potential, resource‐efficient cooling technology. However, many challenges involving materials science and engineering need to be overcome to achieve an industry‐ready technology. Caloric materials with a first‐order transition—associated with a large volume expansion or contraction—appear to be the most promising because of their large adiabatic temperature and isothermal entropy changes. In this study, using experiment and simulation, it is demonstrated with the most promising magnetocaloric candidate materials, La–Fe–Si, Mn–Fe–P–Si, and Ni–Mn–In–Co, that the characteristics of the first‐order transition are fundamentally determined by the evolution of mechanical stresses. This phenomenon is referred to as the stress‐coupling mechanism. Furthermore, its applicability goes beyond magnetocaloric materials, since it describes the first‐order transitions in multicaloric materials as well.  相似文献   

2.
Substrate‐attached and freestanding single crystalline Fe70Pd30 ferromagnetic shape memory alloy membranes, which were synthesized by molecular beam epitaxy on MgO (001) and later released from their substrates, are characterized with respect to their structural, thermal and magnetic properties. Residing in the two‐phase region of austenite and the correct martensite phase with face centered tetragonal (fct) structure at room temperature, they reveal martensite transition with little hysteresis at 326 K and 320 K, respectively. Comparing substrate‐attached with freestanding films, which show fundamentally different magnetic fingerprints, it is proposed that domain structure is capable of posing a bias on the austenite → fct‐martensite phase transition by favoring martensite variants with their easy axis aligned along the field – just as the substrate constitutes a mechanical constraint on the transition. If confirmed, this would suggest thermo‐magnetic actuation as an alternative where only moderate magnetic fields are feasible, but moderate temperature changes are possible.  相似文献   

3.
Microrods of the ferrosulfide minerals greigite (Fe3S4) and marcasite (FeS2) are selectively synthesized by an in situ magnetic‐field‐assisted hydrothermal route. Each complex microrod is composed of fine building blocks with different shapes. The unique magnetic properties of the microrods and electrical performance of a single microrod are studied. The results demonstrate that the magnetic properties of the ferrosulfide minerals are strongly related to their corresponding microstructures. The value of the low‐temperature transition increases as the greigite component in the product decreases. The combination of small‐molecule sulfur precursors and an applied magnetic field makes possible the selective synthesis of ferrosulfide minerals with different phases and distinct microstructures, underlining the fact that the magnetic field can be a useful tool as well as an independent parameter for the phase‐selective synthesis and self‐assembly of inorganic building blocks in solution chemistry.  相似文献   

4.
Surfactant‐free, self‐assembled iron oxide/silica core–shell (SAIO@SiO2) nanocarriers were synthesized as bifunctional magnetic vectors that can be triggered for the controlled release of therapeutic agents by an external magnetic field. In addition, drug release profiles can be well‐regulated through an ultrathin layer of silica shell. The hydrophobic drug molecules were encapsulated within the iron oxide‐PVA core and then further covered with a thin‐layer silica shell to regulate the release pattern. Remote control of drug release from the SAIO@SiO2 nanocarriers was achieved successfully using an external magnetic field where the core phase being structurally disintegrated to a certain extent while subjected to magnetic stimulus, resulting in a burst release of the encapsulated drug. However, a relatively slow and linear release restored immediately, directly after removal of the stimulus. The nanostructural evolution of the nanocarriers upon the stimulus was examined and the mechanism for controlled drug release is proposed for such a core–shell nanocarrier. Surprisingly, the surfactant‐free SAIO@SiO2 nanocarriers demonstrated a relatively high uptake efficiency from the HeLa cell line. Together with a well‐regulated controlled release design, the nanocarriers may provide great advantages as an effective cell‐based drug delivery nanosystem for biomedical applications.  相似文献   

5.
2D H‐phase vanadium disulfide (VS2) is expected to exhibit tunable semiconductor properties as compared with its metallic T‐phase structure, and thus is of promise for future electronic applications. However, to date such 2D H‐phase VS2 nanostructures have not been realized in experiment likely due to the polymorphs of vanadium sulfides and thermodynamic instability of H‐phase VS2. Preparation of H‐phase VS2 monolayer with lateral size up to 250 µm, as a new member in the 2D transition metal dichalcogenides (TMDs) family, is reported. A unique growth environment is built by introducing the molten salt‐mediated precursor system as well as the epitaxial mica growth platform, which successfully overcomes the aforementioned growth challenges and enables the evolution of 2D H‐phase structure of VS2. The honeycomb‐like structure of H‐phase VS2 with broken inversion symmetry is confirmed by spherical aberration‐corrected scanning transmission electron microscopy and second harmonic generation characterization. The phase structure is found to be ultra‐stable up to 500 K. The field‐effect device study further demonstrates the p‐type semiconducting nature of the 2D H‐phase VS2. The study introduces a new phase‐stable 2D TMDs materials with potential features for future electronic devices.  相似文献   

6.
Many material device applications would benefit from thin diamond coatings, but current growth techniques, such as chemical vapor deposition (CVD) or atomic layer deposition require high substrate and gas‐phase temperatures that would destroy the device being coated. The development of freestanding, thin boron‐doped diamond nanosheets grown on tantalum foil substrates via microwave plasma‐assisted CVD is reported. These diamond sheets (measuring up to 4 × 5 mm in planar area, and 300–600 nm in thickness) are removed from the substrate using mechanical exfoliation and then transferred to other substrates, including Si/SiO2 and graphene. The electronic properties of the resulting diamond nanosheets and their dependence on the free‐standing growth, the mechanical exfoliation and transfer processes, and ultimately on their composition are characterized. To validate this, a prototypical diamond nanosheet–graphene field effect transistor‐like (DNGfet) device is developed and its electronic transport properties are studied as a function of temperature. The resulting DNGfet device exhibits thermally activated transport (thermionic conductance) above 50 K. Below 50 K a transition to variable range hopping is observed. These findings demonstrate the first step towards a low‐temperature diamond‐based transistor.  相似文献   

7.
The thermotropic and lyotropic liquid‐crystalline (LC) phases of the ionic self‐assembled complex N,N′,‐bis(2‐(trimethylammonium)ethylene)‐perylene‐3,4,9,10‐tetracarboxyldiimide‐bis(2‐ethylhexyl)sulfosuccinate have been studied using polarizing microscopy, differential scanning calorimetry (DSC), and X‐ray scattering techniques. A two‐dimensional (2D) columnar thermotropic LC phase with π–π stacking of the perylene tectonic units and a lyotropic LC phase in dimethyl sulfoxide (DMSO) have been found. Different techniques have been applied to align both systems and included: surface interactions, electric and magnetic fields, shear force, and controlled domain formation at the LC–isotropic phase‐transition front (PTF). Characterization of the alignment in films has been performed using polarized UV‐vis spectroscopy and transmission null‐ellipsometry. The best results have been obtained for alignment of the material in a lyotropic phase by controlled domain formation at the PTF of the LC–isotropic phase transition. In this case, a dichroic ratio of 18 is achieved with packing of columns of perylenediimide tectons perpendicular to the PTF.  相似文献   

8.
A room temperature magnetoelectric multiferroic is of interest as, e.g., magnetoelectric random access memory. Bulk samples of the perovskite (1?x)BiTi(1?y)/2FeyMg(1?y)/2O3xCaTiO3 (BTFM–CTO) are simultaneously ferroelectric, weakly ferromagnetic, and magnetoelectric at room temperature. In BTFM–CTO, the volatility of bismuth oxide, and the complex subsolidus reaction kinetics, cause the formation of a microscopic amount of ferrimagnetic spinel impurity, which complicates the quantitative characterization of their intrinsic magnetic and magnetoelectric properties. Here, a controlled synthesis route to single‐phase bulk samples of BTFM–CTO is devised and their intrinsic properties are determined. For example, the composition x = 0.15, y = 0.75 shows a saturated magnetization of 0.0097μB per Fe, a linear magnetoelectric susceptibility of 0.19(1) ps m?1, and a polarization of 66 μC cm?2 at room temperature. The onset of weak ferromagnetism and linear magnetoelectric coupling are shown to coincide with the onset of bulk long‐range magnetic order by neutron diffraction. The synthesis strategy developed here will be invaluable as the phase diagram of BTFM–CTO is explored further, and as an example for the synthesis of other compositionally complex BiFeO3‐related materials.  相似文献   

9.
The use of gate bias to control electronic phases in VO2, an archetypical correlated oxide, offers a powerful method to probe their underlying physics, as well as for the potential to develop novel electronic devices. Up to date, purely electrostatic gating in 3‐terminal devices with correlated channel shows the limited electrostatic gating efficiency due to insufficiently induced carrier density and short electrostatic screening length. Here massive and reversible conductance modulation is shown in a VO2 channel by applying gate bias VG at low voltage by a solid‐state proton (H+) conductor. By using porous silica to modulate H+ concentration in VO2, gate‐induced reversible insulator‐to‐metal (I‐to‐M) phase transition at low voltage, and unprecedented two‐step insulator‐to‐metal‐to‐insulator (I‐to‐M‐to‐I) phase transition at high voltage are shown. VG strongly and efficiently injects H+ into the VO2 channel without creating oxygen deficiencies; this H+‐induced electronic phase transition occurs by giant modulation (≈7%) of out‐of‐plane lattice parameters as a result of H+‐induced chemical expansion. The results clarify the role of H+ on the electronic state of the correlated phases, and demonstrate the potentials for electronic devices that use ionic/electronic coupling.  相似文献   

10.
A new mechanism is proposed for the generation of self‐assembled nanodots at the surface of a film based on spontaneous outcropping of the secondary phase of a nanocomposite epitaxial film. Epitaxial self‐assembled Sr–La oxide insulating nanodots are formed through this mechanism at the surface of an epitaxial metallic ferromagnetic La0.7Sr0.3MnO3 (LSMO) film grown on SrTiO3 from chemical solutions. TEM analysis reveals that, underneath the La–Sr oxide (LSO) nanodots, the film switches from the compressive out‐of‐plane stress component to a tensile one. It is shown that the size and concentration of the nanodots can be tuned by means of growth kinetics and through modification of the La excess in the precursor chemical solution. The driving force for the nanodot formation can be attributed to a cooperative effect involving the minimization of the elastic strain energy and a thermodynamic instability of the LSMO phase against the formation of a Ruddelsden–Popper phase Sr3Mn4O7 embedded in the film, and LSO surface nanodots. The mechanism can be described as a generalization of the classical Stranski–Krastanov growth mode involving phase separation. LSO islands induce an isotropic strain to the LSMO film underneath the island which decreases the magnetoelastic contribution to the magnetic anisotropy.  相似文献   

11.
12.
The crystal structure, magnetic properties, and temperature‐ and photoinduced phase transition of [{CoII(4‐methylpyridine)(pyrimidine)}2{CoII(H2O)2}{WV(CN)8}2]·4H2O are described. In this compound, a temperature‐induced phase transition from the CoII (S = 3/2)‐NC‐WV(S = 1/2) [high‐temperature (HT)] phase to the CoIII(S = 0)‐NC‐WIV(S = 0) [low temperature (LT)] phase is observed due to a charge‐transfer‐induced spin transition. When the LT phase is irradiated with 785 nm light, ferromagnetism with a high Curie temperature (TC) of 48 K and a gigantic magnetic coercive field (Hc) of 27 000 Oe are observed. These TC and Hc values are the highest in photoinduced magnetization systems. The LT phase is optically converted to the photoinduced phase, which has a similar valence state as the HT phase due to the optically induced charge‐transfer‐induced spin transition.  相似文献   

13.
First order phase transitions for materials with exotic properties are usually believed to happen at fixed values of the intensive parameters (such as pressure, temperature, etc.) characterizing their properties. It is also considered that the extensive properties of the phases (such as entropy, volume, etc.) have discontinuities at the transition point, but that for each phase the intensive parameters remain constant during the transition. These features are a hallmark for systems described by two thermodynamic degrees of freedom. In this work it is shown that first order phase transitions must be understood in the broader framework of thermodynamic systems described by three or more degrees of freedom. This means that the transitions occur along intervals of the intensive parameters, that the properties of the phases coexisting during the transition may show peculiar behaviors characteristic of each system, and that a generalized Clausius–Clapeyron equation must be obeyed. These features for the magnetic case are confirmed, and it is shown that experimental calorimetric data agree well with the magnetic Clausius–Clapeyron equation for MnAs. An estimate for the point in the temperature‐field plane where the first order magnetic transition turns to a second order one is obtained (the critical parameters) for MnAs and Gd5Ge2Si2 compounds. Anomalous behavior of the volumes of the coexisting phases during the magnetic first order transition is measured, and it is shown that the anomalies for the individual phases are hidden in the behavior of the global properties as the volume.  相似文献   

14.
We report electronic structure calculations using density‐functional theory (local density approximation (LDA) and generalized gradient approximation (GGA); plane waves and muffin‐tin orbitals; pseudopotentials and all‐electron approaches) on non‐stoichiometric CoNxO1–x oxynitride phases. The preference of the experimentally suggested zinc‐blende structure type over the rock‐salt type is confirmed and explained, on the basis of COHP (crystal orbital Hamilton population) chemical bonding analyses, by reduced Co–Co antibonding interactions in the ZnS structural alternative. A pressure‐induced phase transition into the NaCl type, however, is predicted at approximately 30 GPa. Supercell calculations touching upon the exact composition and local structure of CoNxO1–x provide evidence for a broad range of energetically metastable compositions with respect to the zinc‐blende‐type boundary phases CoN and CoO, especially for the more oxygen‐rich phases. All non‐stoichiometric compounds are predicted to be metallic materials which do not exhibit significant magnetic moments. Likewise, there is no indication for anionic ordering such that random anion arrangements are preferred.  相似文献   

15.
Multiferroics are promising for sensor and memory applications, but despite all efforts invested in their research no single‐phase material displaying both ferroelectricity and large magnetization at room‐temperature has hitherto been reported. This situation has substantially been improved in the novel relaxor ferroelectric single‐phase (BiFe0.9Co0.1O3)0.4–(Bi1/2K1/2TiO3)0.6, where polar nanoregions (PNR) transform into static‐PNR as evidenced by piezoresponse force microscopy (PFM) and simultaneously enable congruent multiferroic clusters (MFC) to emerge from inherent strongly magnetic Bi(Fe,Co)O3 rich regions as verified by magnetic force microscopy (MFM) and secondary ion mass spectrometry. The material's exceptionally large Néel temperature TN = 670 ± 10 K, as found by neutron diffraction, is proposed to be a consequence of ferrimagnetic order in MFC. On these MFC, exceptionally large direct and converse magnetoelectric (ME) coupling coefficients, α ≈ 1.0 × 10?5 s m?1 at room‐temperature, are measured by PFM and MFM, respectively. It is expected that the non‐ergodic relaxor properties which are governed by the Bi1/2K1/2TiO3 component to play a vital role in the strong ME coupling, by providing an electrically and mechanically flexible environment to MFC. This new class of non‐ergodic relaxor multiferroics bears great potential for applications. Especially the prospect of a ME nanodot storage device seems appealing.  相似文献   

16.
The roster of materials exhibiting metal–insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse, despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications ranging from frequency‐agile metamaterials to electrochromic coatings and Mott field‐effect transistors. Here, unprecedented, pronounced metal‐insulator transitions induced by application of a voltage are demonstrated for nanowires of a vanadium oxide bronze with intercalated divalent cations, β‐PbxV2O5 (x ≈ 0.33). The induction of the phase transition through application of an electric field at room temperature makes this system particularly attractive and viable for technological applications. A mechanistic basis for the phase transition is proposed based on charge disproportionation evidenced at room temperature in near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy measurements, ab initio density functional theory calculations of the band structure, and electrical transport data, suggesting that transformation to the metallic state is induced by melting of specific charge localization and ordering motifs extant in these materials.  相似文献   

17.
In this paper, we report on how the properties of the suspensions of a lyotropic nematic mineral liquid crystal (MLC) based on V2O5 ribbons are exploited to synthesize single‐domain mesostructured inorganic–inorganic composites, aligned at the centimeter length scale by application of a relatively small magnetic field (0.85 T). In addition, the removal of the mineral template from the inorganic matrix leaves aligned empty channels, fingerprints of the V2O5 ribbons. Large colorless and birefringent mesoporous material is obtained where the orientational order of the channel director has retain the magnetic‐field alignment of its mineral template up to the centimeter length scale within the porous macroscopic silica matrix. A representative material exhibits slit‐like pores with cross‐sectional dimensions of 2 × 20 nm over 600 nm, and has a specific surface area of 207 m2 g–1.  相似文献   

18.
The magnetoelectric effect, i.e., electric‐field control of magnetism in artificial heterostructures is usually limited to surface/interface atoms of the magnetic materials. In order to attain electrical control of magnetism in bulk ferromagnets, this study proposes to extend the definition of magnetoelectric phenomena to include reversible, chemistry‐controlled magnetization switching. A large and reversible change in the room temperature magnetization in strong ferromagnets is reported, with electrochemistry‐driven Li‐ion exchange; carefully chosen spinel ferrites demonstrate a reversible magnetization variation up to 50% for CuFe2O4 and 70% for ZnFe2O4. In case of CuFe2O4, the magnetization variation is predominantly associated with the preferential reduction of Cu2+ to Cu+ ions, and, hence, abides a nearly one‐to‐one relationship with the amount of injected Li‐ions. In addition, the reduction of Cu2+ also annihilates the Fe3+? O? Cu2+ magnetic interaction, resulting in a marked decrease in the Neél temperature of CuFe2O4. In contrast, the electrical tuning of superexchange interactions is found to play the decisive role in ZnFe2O4, where the simple electrochemical reduction model of magnetic cations can only explain a nominal fraction of the total magnetization variation, and indeed an electrochemically controlled reversible change in transition temperature is found necessary to account for the large magnetization variation observed.  相似文献   

19.
Tetrahedrite, Cu12Sb4S13, is an abundant mineral with excellent thermoelectric properties owing to its low thermal conductivity. The electronic and structural origin of the intriguing physical properties of tetrahedrite, including its metal‐to‐semiconductor transition (MST), remains largely unknown. This work presents the first determination of the low‐temperature structure of tetrahedrite that accounts for its unique properties. Contrary to prior conjectures, the results show that the trigonal–planar copper cations remain in planar coordination below the MST. The atomic displacement parameters of the trigonal–planar copper cations, which have been linked to low thermal conductivity, increase by 200% above the MST. The phase transition is a consequence of the orbital degeneracy of the highest occupied 3d cluster orbitals of the copper clusters found in the cubic phase. This study reveals that a Jahn–Teller electronic instability leads to the formation of “molecular‐like” Cu57+ clusters and suppresses copper rattling vibrations due to the strengthening of direct copper–copper interactions. First principles calculations demonstrate that the structural phase transition opens a small band gap in the electronic density of states and eliminates the unstable phonon modes. These results provide insights on the interplay between phonon transport, electronic properties, and crystal structure in mixed‐valence compounds.  相似文献   

20.
Bulk 1T‐TaSe2 as a charge‐density‐wave (CDW) conductor is of special interest for CDW‐based nanodevice applications because of its high CDW transition temperature. Reduced dimensionality of the strongly correlated material is expected to result in significantly different collective properties. However, the growth of atomically thin 1T‐TaSe2 crystals remains elusive, thus hampering studies of dimensionality effects on the CDW of the material. Herein, chemical vapor deposition (CVD) of atomically thin TaSe2 crystals is reported with controlled 1T phase. Scanning transmission electron microscopy suggests the high crystallinity and the formation of CDW superlattice in the ultrathin 1T‐TaSe2 crystals. The commensurate–incommensurate CDW transition temperature of the grown 1T‐TaSe2 increases with decreasing film thickness and reaches a value of 570 K in a 3 nm thick layer, which is 97 K higher than that of previously reported bulk 1T‐TaSe2. This work enables the exploration of collective phenomena of 1T‐TaSe2 in the 2D limit, as well as offers the possibility of utilizing the high‐temperature CDW films in ultrathin phase‐change devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号