首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 31 毫秒
1.
严阳  华文深  刘恂  崔子浩 《激光技术》2018,42(5):692-698
高光谱图像的空间分辨率较低,导致大量混合像元存在于高光谱图像中。混合像元的存在是使高光谱图像目标分类准确率降低的主要原因之一。高光谱像元解混在高光谱遥感图像处理中具有非常重要的意义。高光谱像元解混主要分为线性和非线性光谱解混两种方法,研究最广泛的是线性光谱解混。归纳了线性光谱解混的两个步骤:(1)提取纯净像元中地物的光谱信号,即提取端元,这是关键步骤;(2)利用端元的加权线性组合对混合像元进行光谱解混,即丰度反演。简述了端元提取及丰度反演研究的主要进展,介绍了端元提取的几种典型算法。通过归纳、对比和分析,总结了不同端元提取方法的特点,并对高光谱解混的研究前景进行了展望。  相似文献   

2.
受高光谱遥感仪器空间分辨率的限制以及复杂地物的影响,高光谱图像中存在大量混合像元,成为阻碍高光谱遥感技术应用和发展的关键因素。高光谱混合像元分解技术已成为高光谱图像处理中的关键技术。系统地整理近年来高光谱解混的相关算法,从端元提取和丰度估计两个方面介绍高光谱解混的研究进展。对高光谱解混的相关算法进行分类总结,并对其原理和优缺点进行了对比分析。结合当前研究现状针对存在的问题做出了展望,指出今后可从模型共存、空谱结合、时效性以及工程实用化的角度对高光谱解混作进一步研究。  相似文献   

3.
针对高光谱图像中普遍存在的混合像元中各端元空间分布定位困难的问题,文中提出一种基于K-SVD的光谱解混算法,利用其解混结果进行亚像元定位。算法首先通过KNN分类来区分待处理图像中的混合像元和纯像元,然后借鉴基于冗余字典的稀疏分解相关理论,以标准光谱库为基础,通过基于K-SVD的字典训练算法训练产生最具代表性的地物光谱曲线,构建端元冗余字典,通过基于K-SVD的稀疏分解算法实现各端元丰度的求解。最后利用求得的丰度系数在两种空间性相关性约束下进行亚像元定位。实验结果表明,采用该算法进行模拟数据和真实数据的亚像元的定位可以取得不错的定位结果。  相似文献   

4.
5.
高光谱遥感图像端元提取的零空间光谱投影算法   总被引:3,自引:0,他引:3       下载免费PDF全文
端元提取技术是高光谱遥感图像光谱解混的关键.在线性光谱混合分析中,首先引入了高光谱遥感图像经过零空间光谱投影后具有单形体的凸不变性.在此基础上,提出了零空间光谱投影算法,通过设计各种度量和准则,制定不同的单次端元提取策略,灵活地实现算法.经过证明,零空间光谱投影算法是对基于子空间投影距离算法(包括零空间投影距离算法与经典正交子空间投影算法)的进一步延伸,提供了更多的端元提取策略.实验结果表明,零空间光谱投影算法在模拟图像以及真实高光谱遥感图像中都能够有效地提取出图像中的各种端元.  相似文献   

6.
基于线性光谱混合模型的光谱解混改进模型   总被引:2,自引:1,他引:1  
传统的基于线性光谱混合模型(LSMM)的解混方法采用迭代求解方式,复杂度较高,为此提出一种基于几何方式的模型求解方法。另一方面,LSMM采用固定谱形固定数量的光谱端元进行解混,影响了光谱解混精度,为此提出端元谱形的区域修正方法和端元子集的局域确定方法,从而建立基于柔性端元的新解混方式。实验表明了所提出的几何求解方法及柔性光谱端元方式的有效性。  相似文献   

7.
基于分层的多端元光谱解混算法   总被引:1,自引:1,他引:0  
高光谱图像中,单一端元光谱很难准确刻画一个类别,导致解混结果不准确。针对经典多端元光谱解混(MESMA)算法存在计算量大、端元预选繁琐等缺点,提出基于分层的MESMA(HMESMA)算法,第1层确定像元包含地物类别,第2层在第1层的基础上再分层确定像元包含最优端元个数。采用模拟数据和真实高光谱数据进行实验,证明了本文算法比固定端元解混效果好,平均丰度误差最高降低了2.65%,与经典的MESMA算法精度相当,但大大降低了计算量,提高了计算效率。  相似文献   

8.
严阳  华文深  张炎  崔子浩  刘恂 《激光技术》2019,43(4):574-578
为了解决传统N-FINDR算法降维时破坏像元光谱曲线的物理意义这个问题,采用波段选择方法中的最佳指数法代替特征提取,改进N-FINDR算法的降维方式;利用模拟和真实高光谱数据进行实验,分别用改进的N-FINDR算法与其它两种算法提取端元,并用全约束最小二乘法解混.结果表明,改进的N-FINDR算法的解混精度更高,用时更少.用波段选择代替特征提取改进降维方式,保留了光谱曲线的物理意义,在N-FINDR算法中是可行的.  相似文献   

9.
基于图像中存在的邻域以及非局部相似等图像空间特征和联合稀疏解混思想,该文提出一种基于高光谱图像光谱相似性度量的多任务联合稀疏解混方法。通过高光谱图像的光谱特性统计值设定光谱度量阈值,对高光谱图像中相似的像元光谱进行光谱相似性度量分组,再对分组像元光谱数据进行多任务联合稀疏光谱解混模型的构建和求解,得到最终的丰度系数。模拟数据实验结果表明,该方法一定程度上提升了现有联合稀疏光谱解混方法的丰度估计精度,真实数据结果也验证了方法的有效性。  相似文献   

10.
道路检测是遥感图像处理的一个重要任务,高光谱图像以其图谱合一的特点为道路检测提供了新的有用信源.针对遥感道路检测需求,本文提出一种利用高光谱图像进行道路检测的新方法.该方法首先利用线性混合物模型和独立分量分析技术对输入高光谱图像进行无监督解混,实现道路目标的光谱提取,得到描述道路目标的解混分量图.在此基础上,利用均值比例算子和Hough变换实现最终道路检测.仿真实验结果标明,本文提出的算法是有效的.  相似文献   

11.
传统的高光谱图像混合像元分解技术包括端元提取和估计每个端元的混合比例.虽然很多模型都能得到可以接受的解混结果,但是一些未知端元的存在使得结果在包含未知端元的像素点处出现偏差.因此,提出了一种基于支持向量数据描述的高光谱图像混合像元分解算法.首先高光谱图像数据被分成类内和类外两部分,类内是完全由已知端元数据混合的像素点,而类外数据是包含未知端元的像素点.两类数据交界处被认为是已知端元和未知端元混合的数据.然后再对这些像素点进行混合像元分解,分别对仿真数据和真实高光谱图像进行实验.结果表明该算法可以有效地解决因存在未知端元对解混精度的影响,而且能给出未知端元的解混分量.该方法的解混结果几乎不受未知端元的影响,优于直接解混结果  相似文献   

12.
利用背景残差数据检测高光谱图像异常   总被引:1,自引:0,他引:1  
针对高光谱图像微小目标检测中存在的严重背景干扰问题,提出了一种基于背景残差数据的非线性异常检测算法.首先利用提取的背景光谱端元对图像各像元进行光谱解混,实现了目标信息和复杂背景信息的分离;接着将含有丰富目标信息的解混残差数据非线性映射到高维特征空间,可以充分挖掘高光谱图像波段间隐含的非线性信息,并在特征空间利用RX算子完成目标的检测,从而在抑制大概率背景信息的基础上有效地利用了高光谱图像波段间的非线性统计特性.为了验证算法的有效性,利用真实的AVIRIS数据进行了实验研究,并与经典RX算法、未抑制背景的特征空间核RX算法的检测结果相比较,结果表明基于背景残差数据的检测算法具有良好的检测性能和较低的虚警,且运算复杂度较低.  相似文献   

13.
基于背景残差数据的高光谱图像异常检测算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对高光谱图像微小目标检测中存在的严重背景干扰问题,提出了一种基于背景残差数据的非线性异常检测算法.首先利用提取的背景光谱端元对图像各像元进行光谱解混,实现了目标信息和复杂背景信息的分离;接着将含有丰富目标信息的解混残差数据非线性映射到高维特征空间,可以充分挖掘高光谱图像波段间隐含的非线性信息,并在特征空间利用RX算子完成目标的检测,从而在抑制大概率背景信息的基础上有效地利用了高光谱图像波段间的非线性统计特性.为了验证算法的有效性,利用真实的AVIRIS数据进行了实验研究,并与经典RX算法、未抑制背景的特征空间核RX算法的检测结果相比较,结果表明基于背景残差数据的检测算法具有良好的检测性能和较低的虚警,且运算复杂度较低.  相似文献   

14.
混合像元的存在是制约高光谱遥感应用精度的主要原因,因此必须进行高光谱解混合。端元提取作为高光谱解混合的关键,往往易受噪声和异常点的干扰。为了提高端元提取精度,针对高光谱端元提取提出了一种空谱联合的预处理方法。首先,定义了新概念光谱纯度指数,主要用于预估高光谱图像中每个像元的光谱纯度;其次,给出了基于光谱纯度指数的空间去冗余方法,利用真实地物的空间分布连续性,判断和移除高光谱图像中冗余像元,最终形成精简的候选端元集。实验结果表明:采用提出的预处理方法后,对于模拟高光谱图像,提取的端元与原始端元之间夹角平均减少了9.0223°,候选端元数量少于原始像元数量的10%。该预处理方法不仅有效消除了噪声和异常点的干扰,提高了端元提取精度,且大幅降低了时间复杂度。  相似文献   

15.
基于相关向量机的高光谱影像混合像元分解   总被引:5,自引:1,他引:4  
杨国鹏  周欣  余旭初  陈伟 《电子学报》2010,38(12):2751-2756
 提出了一种利用相关向量机后验概率进行高光谱影像混合像元分解的方法.基于支持向量机后验概率输出的高光谱影像混合像元分解方法中,类别后验概率需要通过带参数的S形函数近似,而且模型需要通过交叉验证获取较好的规则化系数.相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,核函数不需要满足Mercer条件.本文从分析支持向量机用于高光谱影像混合像元分解存在的不足出发,介绍了稀疏贝叶斯分类模型和模型参数推断,采用了快速序列稀疏贝叶斯学习算法.通过PHI影像的混合像元分解实验分析,表明了基于相关向量机的高光谱影像混合像元分解方法的优势.  相似文献   

16.
针对传统单端元提取方法不能描述端元变异、限制混合像元分解精度的缺点,提出一种基于像元纯净指数的多端元提取算法(Multiple Endmember Extraction Algorithm Based on Pixel Purity Index,PPI-MEE)。首先将图像划分为不重叠的图像块,并分别利用改进的PPI算法提取候选端元集,然后利用候选端元的邻域像元光谱信息对候选端元进行优化和精选。最后,对优化精选后的端元集分类得到每类地物的多端元光谱集。仿真数据和真实高光谱数据的实验结果表明,提出的多端元提取策略具有表征遥感图像中端元光谱变异的能力,能够提高端元提取精度和混合像元分解精度。  相似文献   

17.
基于高精度端元的混合像元线性分解模型研究   总被引:1,自引:1,他引:0       下载免费PDF全文
从理论上阐述了混合像元的产生机理和混合像元线性分解模型,研制了一套地面成像光谱实验系统,直接获取了高精度的端元光谱数据,通过像元合并的方式构造混合像元,针对不同丰度的非立体空间混合像元端元,分析了根据线性分解模型加权计算得到的光谱与实际混合光谱的误差,进而论证了线性分解模型的精度.  相似文献   

18.
高光谱图像分类的全面加权方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
像元分类是高光谱数据分析的最基本、最重要内容之一,而基于支持向量机(SVM)的分类方法以其高效性得以广泛使用.原始的SVM分类模型中并没有体现出样本、特征、类别对于分类或分析的不同重要性,从而影响了处理效果.为此,将各样本偏离其类中心的距离映射为样本加权系数;将类内散度矩阵应用于特征加权方法;将SVM方程系统中的单位矩阵对角元素加以调整来完成类别加权.不同加权方法既可以单独使用也可以联合使用.实验表明,所提出的加权方法有助于进一步提高高光谱图像的分类效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号