首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
北京市大气SO2、NO2和O3的激光雷达监测实验   总被引:4,自引:1,他引:3  
目前监测网中大部分SO2、NO2和O3监测设备为地基点式仪器.该种设备不能获得大气SO2、NO2和O3的空间分布信息.SO2、NO2和O3的空间分布数据在习惯上一般是通过球载探测仪来获取.但通过球载仪获得的数据时间和空间分辨率都较差.中科院安徽光机所已开发研制完成了车载测污激光雷达系统.该系统能进行大气SO2、NO2和O3进行三维空间扫描测量.利用该系统2001年12月27日至2002年1月27日期间于北京市进行了大气SO2、NO2和O3的监测实验,首次给出了北京市近地面层大气SO2、NO2和O3的激光雷达测量数据.测量数据与地面仪器的监测数据进行了比较,结果表明车载测污激光雷达系统的测量数据是合理可靠的.  相似文献   

2.
珠三角地区大气中HCHO、O3、NO2的监测与分析   总被引:1,自引:1,他引:0  
利用长程差分吸收光谱技术于2008年10月15日至11月19日对珠三角地区江门市大气中的HCHO、O3、NO2等污染物进行了实时监测,结合气象数据,分析了江门地区主要污染物HCHO、O3、NO2的日变化特征;同时,对江门市的主要污染来源进行了分析.对比了HCHO和其他各类污染物浓度数据的相关性分析及变化趋势,结果表明江门地区的HCHO主要来源于二次污染.利用多元线性回归分析,进一步证明了该结论.  相似文献   

3.
奥运期间北京SO2、NO2、O3以及PM10污染水平及变化特征分析   总被引:1,自引:1,他引:0  
结合遥感所、云岗镇、燕山石化及首都机场4个站点2008年6月至9月期间SO2、NO2、O3以及PM10的监测结果,对北京奥运期间主要污染物浓度水平和变化特征进行分析.PM10为北京市的主要污染物,各时段市区站点PM10均明显高于市郊站点,城郊差异从7月1日至7月19日以及7月20日至8月24日时段的50%减少至8月8日至8月24日以及9月6日至9月17日时段的25%左右.城郊各阶段PM10日变化的差异主要表现在凌晨至11:00前后的时段.一次污染物SO2和NO2均达到国家大气环境质量二级标准,随着减排措施的实施,降幅均超过14%.从日变化曲线来看,各站点NO2基本呈双峰型特征,SO2在燕山石化和云岗镇站点表现出双峰态.O3作为光化学烟雾的指示剂,各站点O3呈现出白天高、夜晚低的日变化特征.云岗镇和燕山石化的O3日变化表现出明显的双峰型.4个站点O3在实施减排措施的初始阶段呈现出升高的趋势, 7月20日后的统计数据表明后期O3浓度持续下降,平均日变化最大值和最小值的比值减小.各个污染物浓度在8月8日至8月24日时段下降最为显著.相比于7月1日至7月19日减排措施实施的起始阶段,各站点在7月20日至8月24日奥运期间SO2、NO2、O3和PM10降低幅度分别为14%~33%,15%~61%,2.5%~14%和10%~12%.  相似文献   

4.
夏季城市大气中O_3和NO_2的观测研究   总被引:2,自引:1,他引:1  
利用差分吸收光谱(DOAS)技术于2007年夏季对北京市朝阳区大气重要污染物O3和NO2进行了实时监测.分析了O3、NO2浓度的日变化规律,O3呈现明显的日变化趋势,日间因光化学作用浓度高,且在午后出现最大值;夜间浓度低,日出前出现最低值.NO2表现出与O3相反的变化趋势,白天因光解浓度较低;夜间因交通排放和NO2浓度积累达到峰值.观测结果与传统点式仪器进行了比较,对比结果显示两种方法有着很好的一致性.通过敏感性分析计算,表明O3光化学生成处于挥发性有机化合物(VOCs)敏感.  相似文献   

5.
介绍了AML-2车载式大气环境激光雷达系统结构和主要技术参数.详细阐述了测量气溶胶粒子消光系数和污染气体浓度的基本原理和数据处理方法.给出了2008年冬季大气参数合肥综合观测实验中获得的SO2、NO2、O3和气溶胶的垂直分布.从观测结果中可以看出,合肥冬季SO2和NO2的浓度比较小,O3有明显的时间变化,主要是由于受到...  相似文献   

6.
本文介绍了一种用于大气污染监测的车载激光雷达.首先简要介绍了车载大气环境监测激光雷达系统的系统组成和测量原理.随后阐述了利用差分吸收测量原理(DIAL)即利用待测气体分子的光谱吸收特性测量该气体的浓度,通过对激光雷达测量得到回波数据进行处理和分析,获得O3、NO2、SO2等污染气体浓度的时空变化.并可以将污染物浓度数据根据用户需要和当时测量要求通过浓度廓线图、浓度随时间变化的分色图、浓度随扫描角变化的扫描分色图、和浓度三维立体变化分色图等方式实时显示出来.这种快速大范围的三维测量和显示O3、NO2等多种大气污染物浓度的大气监测手段为国内首创.(OE6)  相似文献   

7.
亚运期间利用多轴差分吸收光谱仪(MAX-DOAS)对广州市的大气污染物进行了实时监测,分别对重要大气常规污染物NO_2和SO_2的日变化特征进行了探讨和分析,并通过结合气象条件和周围的重要污染源综合监测结果分析研究了广州市周围的区域污染输送,结果发现位于市东南部的工业区对于市区的污染存在较大的影响,其中以SO_2尤为明显。分析NO_2廓线结果表明,污染物主要位于1 km以下,高污染层主要位于0.5 km以下。  相似文献   

8.
在重庆市大气污染区域输送通道上设置龙市站、超级站、南坪站三个观测站点,利用基于被动DOAS技术的MAX-DOAS地基多轴差分吸收光谱仪对SO2和NO2垂直柱浓度进行连续探测,实时获取两种大气污染物的时空分布和区域性输送过程,并将MAX-DOAS探测结果与当地API数据进行了对比分析。探测结果显示,龙市站、超级站、南坪站NO2垂直柱浓度均值分别为5.90×1015、18.96×1015、17.82×1015molec./cm2,超级站最高,龙市站最低;SO2垂直柱浓度均值分别为16.46×1015、18.35×1015、55.56×1015molec./cm2,南坪站最高,龙市站最低;分析研究表明,NO2受本地交通排放源影响为主,SO2则受周边工业污染源排放的影响较大。  相似文献   

9.
机动车作为大气PM2.5的重要污染源,其运行产生的氨气(NH3)能与大气中的酸性气体相结合,形成二次污染物。为掌握北京市交通环境中氨的排放情况,探索影响交通环境氨浓度的因素及关系,利用DOAS仪器对交通环境(北航东门天桥下)和城市环境(北京市环境保护监测中心楼顶)NH3的浓度进行持续7个月的观测。结果显示污染物的排放量总体呈现夏季低,春秋季高的特点,交通环境中氨的日平均浓度水平(25.19µg /m3)高于城市环境(15.90µg /m3)。全天浓度变化趋势稳定,均有明显的高峰低谷变化,表明交通污染源对大气氨的贡献较为稳定。从相关性分析可以看出,NH3与PM2.5、NO2、NOx、CO相关性较高,与NO相关性较弱。分析得出3级以上的风有利于氨浓度的快速扩散和降低。对学院路全年各类型机动车排放量和逐小时的排放量进行计算,得到氨排放量主要来自小型客车(汽油)和出租车(汽油)(占97.9%)。  相似文献   

10.
亚运期间利用多轴差分吸收光谱仪(MAX-DOAS)对广州市的大气污染物进行了实时监测,分别对重要大气常规污染物NO2和SO2的日变化特征进行了探讨和分析,并通过结合气象条件和周围的重要污染源综合监测结果分析研究了广州市周围的区域污染输送,结果发现位于市东南部的工业区对于市区的污染存在较大的影响,其中以SO2尤为明显。分析NO2廓线结果表明,污染物主要位于1 km以下,高污染层主要位于0.5 km以下。  相似文献   

11.
利用长程差分光学吸收光谱技术对黄浦江下游典型航道区域船舶排放的空气污染物进行高时间分辨率监测。 研究表明 SO2 浓度受船舶尾气烟羽影响显著, 浓度瞬时可增高 2∼4 倍不等, 峰值超过 10×10−9 (体积混合比); 而由于 来源情况更为复杂, NO2 浓度的变化较为平缓, 且由于受到周围机动车排放影响, 日变化呈现出明显的双峰特征。受 船流量影响, SO2 浓度在日间相对较高。人为活动影响分析表明, NO2 浓度在春节假期相较于前后时段下降 30%以上, 而在新冠疫情重大突发公共卫生事件一级响应启动后下降达 50%。值得注意的是, 由于船舶活动规律的差异性, SO2 浓度的假期效应以及对疫情响应措施的反应并不明显, 但 SO2 浓度的典型排放高值呈现逐年下降的趋势。  相似文献   

12.
为探讨复合污染条件下气溶胶的消光特性, 选取成都市 O3 与 PM2:5 同步污染的春季开展气溶胶组分与消光 特性观测, 并结合美国 IMPROVE 化学消光算法研究了组成与消光特征的关系。结果表明, 2018 年春季成都 PM2:5 平 均浓度与散射系数 bsp 分别为 (50.3±22.4) µg·m−3 和 (237.5±140.2) Mm−1, 且二者均呈现“单峰单谷”的日变化趋势; 大 气气溶胶的消光系数为 (268.4±153.7) Mm−1, 对其贡献最大的组分是 NH4NO3 (26.0%) 和有机物 (OM) (24.4%)。分析 表明在 PM2:5 与 O3 复合污染情况下, 二次污染组分 SNA (SO42−、 NO3−、 NH4+ 三者之和)、二次有机碳 (SOC) 的含量 显著增加, 与清洁天相比分别升高了 1.0 和 1.3 倍; OM 成为最大消光贡献者 (32.2%), 其次是 NH4NO3 和 (NH4)2SO4, 分别贡献 22.8% 和 20.5%。因此, 进一步减少气态前体物如 SO2、 NOx、 NH3 和 VOCs 的排放可以有效改善成都地区 空气质量和能见度。  相似文献   

13.
利用化学沉淀法制备了In2O3粉体,采用X射线衍射(XRD)的方法得到了粉体的晶体结构,颗粒尺寸为纳米量级。以In2O3为基体材料,制作了烧结型旁热式气敏元件,通过固相掺杂的办法改善元件的气敏特性。在低于100℃的工作温度下,通过对SO2,CO,CH4,Cl2,NO2五种气体的检测,发现分别以质量分数为2%PdCl2和5%CeO2为掺杂剂的元件对NO2气体均表现出较好的敏感性,对SO2,CO,CH4,Cl2四种干扰气体的灵敏度较低,表明元件具有良好的选择性。  相似文献   

14.
2013年12月3日至2014年1月14日, 在湘潭市2个功能区(交通、商业、居民区和工业区) 采样点对大气PM2.5进行了采集, 并同步采集了SO2、NO2; 进而利用离子色谱法对PM2.5中二次水溶性无机离子(SO42−、NO3 和 NH4+ ) 的浓度进行测试分析。通过分析不同空气质量级别下硫、氮氧化速率(SOR 和 NOR) , 探讨了PM2.5中硫酸盐和硝酸盐的来源、形成机制和影响因素等。结果表明, 采样期间湘潭市PM2.5及其二次水溶性无机离子(SO42−、NO3 和 NH4+ ) 的质量浓度分别为148.34、56.19 g/m3, 其中 SO42−、NO3 和 NH4+分别占PM2.5 浓度的15.26%、14.06% 和8.57%, 三者累计值占PM2.5质量浓度的37.88%。随着PM2.5 浓度增加, 二次水溶性无机离子及其气态前体物SO2、NO2 的浓度也逐渐增加, 且“重度”污染时SO42−、NO3 和 NH4+ 浓度较“良”时分别上升了1.93、2.41、2.03倍。不同空气质量级别下PM2.5中的SO42−、NO3 主要以NH4NO3 和(NH4)2SO4 的形式存在, 但在“轻度”和“ 中度”污染时可能存在其它的硫酸盐和硝酸盐。采样期间SOR 和NOR 的平均值分别为0.18和0.17, 不同污染级别下二者均在0.15 以上(大于0.1), 表明湘潭市PM2.5中的硫酸盐和硝酸盐主要是经转化形成的二次污染物。大气PM2.5中NO3 /SO42− 为0.89, 不同空气质量级别下二者比值分别为0.78、0.99、0.82、0.97(均小于1), 表明湘潭市冬季PM2.5污染以燃煤源排放为主。  相似文献   

15.
基于2018年12月8日~12月31日淮北地区多轴差分吸收光谱技术(MAX-DOAS)获得的太阳散射光谱观测数据,反演了该地区NO2对流层柱浓度, 并分析了冬季不同天气下NO$_2$浓度日变化特征。观测结果表明NO2浓度高值出现在12月18日~12月27日期间,日均值最大值6.83×1016 molecules/cm2出现在12月27日,约为日均值最低值的2.9倍。结合风场轨迹模型研究了不同大气条件下的风场,发现在NO2浓度较低时段主要为 偏北风场, NO2浓度高值时段偏南风场增加,表明城区产生的污染向观测区域进行了输送。将MAX-DOAS结果与OMI卫星结果进行了 对比,发现两者具有较好的一致性(R2=0.88)。  相似文献   

16.
利用 2014–2020 年 O3 浓度监测资料和同期自动气象站气象数据, 研究了合肥地表 O3 浓度的日变化和月变 化规律, 分析了温度、湿度、风速等气象要素对 O3 浓度的影响。研究结果表明: 合肥地区 O3 浓度具有典型的单峰 型日变化特征, 通常在 15:00 左右达到峰值, 在 07:00 左右降至日最低值; 最大 8 h 滑动平均值 (O3-8h) 月均浓度变化 呈“M”型, 一般在 6 月和 8 月达到全年最高, 在 1 月和 12 月降为最低; O3-8h 月均最高值是最低值的 2.8∼3.7 倍, 平均 为 3.1 倍; 受气象要素影响, O3 浓度年变化规律与温度基本一致, 与湿度的变化趋势关系不明显。  相似文献   

17.
近地面臭氧污染日趋严重,对人类健康和动植物生长有显著危害。对合肥和邢台两地近地面臭氧结果进行了对比分析。2003~2004年期间合肥地区臭氧浓度日变化呈现较明显的早、中、晚“三峰型”结构;2016年5~6月观测期间邢台臭氧日变化主要呈现早、中“双峰”型结构。合肥臭氧观测站周围被树木环绕,水库包围,植物释放的挥发性有机物引发的光化学反应不容忽视; 陆地和水面之间形成的湖陆风下沉气流是形成早晚次峰的主要原因。邢台属于复合型污染地区,臭氧浓度分析应综合考虑污染源、臭氧前体物成分、气象条件、地理位置等因素。合肥地区数据研究表明,强太阳辐射、温度较高、相对湿度较低的天气有利于臭氧生成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号