首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
Ka波段连续波500W螺旋线行波管研究   总被引:1,自引:1,他引:0  
Ka波段螺旋线大功率行波管在大容量的通信系统中具有重要作用,本文介绍了目前大功率连续波螺旋线行波管的现状,对相关技术进行了分析。通过对高频结构的互作用分析、热分析、多级降压收集极等分析,设计了一个Ka波段连续波500 W行波管的螺旋线互作用结构,计算机模拟结果表明可以满足设计要求。  相似文献   

2.
折叠波导慢波结构太赫兹真空器件研究   总被引:7,自引:0,他引:7  
简要介绍了利用折叠波导慢波结构的太赫兹真空辐射源的发展现状,重点对折叠波导慢波结构的特点进行了研究,并利用这种慢波结构开展了W、D波段行波管,W波段和650GHz返波振荡器,560GHz反馈振荡放大器的设计、计算和模拟优化,分别得到了较好的结果,并实际研制出W波段连续波行波管,输出功率达到8W。对太赫兹真空辐射源的部件技术、微细加工技术进行了研究和分析。  相似文献   

3.
行波管为发射机提供放大信号,其输出功率直接决定着系统的作用距离,是系统的核心部件之一。本文从提升电子效率和电子注功率两方面开展研究,以提升W波段行波管输出功率。基于折叠波导互用电路相速跳变设计,研制出8 GHz带宽内输出功率大于250 W的W波段行波管。提出非半圆弯曲折叠波导与相速跳变技术结合的设计方法,使W波段行波管输出功率和电子效率最高分别达到647 W和13.4%。提出一种四端口式高频结构和一种双弧弯曲折叠波导慢波结构,大幅提升了行波管对工作电流的聚焦能力,基于两种新型结构的创新研究,完成了千瓦级W波段行波管设计。  相似文献   

4.
毫米波行波管具有大功率、宽频带、高效率等特点,在雷达、高速通信、电子对抗等现代电子装备中广泛应用。本文基于Ansys软件对W波段行波管进行热特性仿真,分析工作脉宽对行波管温度的影响。随着工作脉宽的增加,行波管温度升高,在占空比35%下,脉宽0.1、1和3 s的行波管温度分别达到了连续波行波管温度的56.8%,80.7%和87.2%。提高占空比至70%,脉宽0.1和1 s的行波管温度已达到连续波行波管温度的84%和96%,接近于连续波工作状态的行波管温度。通过分析不同脉宽的行波管温度差异,为长脉宽W波段行波管热可靠性设计奠定技术基础。  相似文献   

5.
太赫兹行波管(TWT)级联倍频器基于行波管非线性互作用后电子注中的谐波电流,利用行波管和级联谐波系统组成的倍频器获得电磁波倍频放大。以 W 波段行波管二倍频器为例,对器件的正确性和可行性进行验证。利用微波管模拟器套装(MTSS)软件对设计的倍频器进行三维非线性互作用模拟,结果显示,级联了二次谐波系统的 W 波段行波管倍频器与其他工作在140 GHz~220 GHz 波段的小型太赫兹辐射源相比较,具有优越的性能:谐波输出功率在8 GHz 范围内大于2 W,转换增益大于37 dB。利用 CST公司的粒子工作室软件进行三维粒子注波互作用模拟,结果显示,太赫兹行波管级联倍频器作为潜在的太赫兹源具有高功率、宽频带和高实用化的特点。  相似文献   

6.
应用于毫米波系统的行波管电压低、效率高,本文简要分析了低电压、高脉冲输出功率Ka波段行波管关键技术,介绍了设计方案和制管结果。行波管在17 kV工作电压脉冲输出功率600 W。  相似文献   

7.
本文介绍了一种Ka波段连续波250W螺旋线行波管研制的主要技术方案。介绍了这种行波管的研究现状和研制成果。  相似文献   

8.
主要针对Ka波段宽带高功率螺旋线行波管慢波结构进行了优化设计,旨在提高行波管输出功率和效率,并对返波振荡特性进行了仿真分析。行波管测试结果表明,在工作频段26.5~40 GHz,连续波输出功率大于200 W,总效率超过41%,增益大于31.5 dB。该管可作为Ka波段大功率毫米波功率放大器,应用于各类军事和民用电子系统中。  相似文献   

9.
空间行波管以其高功率、高效率等优势广泛应用于卫星通信,本文对两支X波段空间行波管进行功率合成设计及验证,设计一款低插损、幅相均衡、高隔离度的波导魔T功率合成器。通过前端引入移相器和衰减器,两只X波段45W空间行波管在0.7GHz内,输出功率大于85W合成效率大于90%。该合成器可以作为二进制功率合成单元用于更多支空间行波管大功率合成。  相似文献   

10.
介绍了未来星际通讯用Ka波段30W空间行波管的最新研究进展。行波管电子枪采用传统的皮尔斯型电子枪,高频结构采用螺旋线慢波结构和品型夹持结构,为了保证较高的收集极效率,采用四级降压收集极。测试结果表明在工作频带内行波管输出功率超过34.6W,总效率超过47.5%。当行波管工作于低频状态时,行波管总效率超过了50%,已达到目前国外同等功率量级Ka波段空间行波管研究水平。  相似文献   

11.
提出了W波段螺旋线宽带行波管(TWT)设计方案,论述了高频系统、电子光学系统以及输能系统的计算与模拟。结果表明在80 GHz~100 GHz的范围内,能够得到大于15 W的输出功率,为开展W波段低电压螺旋线行波管的研制工作提供了依据。  相似文献   

12.
This paper presents a tapered ridge-loaded folded waveguide (FWG) slow-wave structure (SWS) for broadband and high power millimeter wave traveling wave tube (TWT). The radio-frequency characteristics including dispersion properties, interaction impedance, S-parameters are analyzed. And based upon these results, the nonlinear large signal performance of the tapered ridge-loaded folded waveguide TWT working in W-band is simulated by 3-D particle-in-cell code. In the same ridge length, the tapered FWG has lower reflection and radio-frequency loss than the normal ridge-loaded FWG. Besides, the tapered ridge-loaded FWG TWT also has higher electron efficiency and larger bandwidth, which is more suitable for millimeter-wave TWT.  相似文献   

13.
A novel folded waveguide circuit that features thick iron pole pieces with hollow centers was built as part of a periodic-permanent-magnet-focused W-band single-stage test-vehicle traveling-wave tube (TWT). These hollow centers, which comprise part of the slow wave circuit, increase the rms axial field and significantly reduce the unwanted transverse field imbalance. For this TWT, a tetrode gun that creates an ultralaminar 20-kV 0.25-A nominal electron beam was used. It was demonstrated that this gun and magnetic structure can provide greater than 97% beam transmission for peak beam power levels as high as 9.25 kW (25 kV, 0.37 A). The unplated circuit, operating around 91 GHz on the edge of a passband, exhibits between 10 dB and 12 dB gain that compares favorably with results of device modeling utilizing the 3D particle-in-cell code Magic3D. Using a feedback approach to characterize large-signal operation, the tube generated 40 W of regenerative oscillator power. Design-optimized versions of this circuit show promise of enabling W-band TWT amplifiers that provide up to 300 W of peak RF output power  相似文献   

14.
The serpentine waveguide circuit is a robust beam-wave interaction circuit for W-band TWTs. Here presented the electromagnetic properties and design methodology for W-band multi-section SWG traveling wave tube. Cold-test (in absence of electron beam) numerical design performed theoretically and further optimized/validated with standard simulation code to predict the dispersion, interaction impedance, ohmic-loss and small-signal gain. Numerical simulation for the quarter wave transformer couplers with SWG circuit geometry shown the return-loss less than −20 dB for the 5% frequency band. Later, in systematic manner, hot-test (in presence of electron beam) numerical design performed for multi-section TWT by using standard particle-in-cell 3-D simulation code. The three section, 60 periods SWG TWT predicted peak radiation power 130 W at target frequency 94 GHz, 39.5 dB saturated gain, 5.3% instantaneous 3-dB frequency bandwidth, and 6.5% electronic efficiency.  相似文献   

15.
短毫米波折叠波导慢波结构精密加工技术   总被引:3,自引:0,他引:3  
介绍了短毫米波折叠波导慢波结构的精密加工技术的进展情况。利用精密电火花加工工艺方法,通过大量的试验实现了短毫米波折叠波导慢波结构的加工,并用于了行波管的研制。  相似文献   

16.
针对W波段过模行波管可能采用的两种梯形线慢波电路结构进行了模拟计算,分析了工作在过模情况的可能性。结果表明传统梯形线慢波电路并不适合工作于高次模式,而悬浮梯形线慢波电路在第三个模式则有着相对较高的互作用耦合阻抗,可以在W波段实现1000W的功率输出。  相似文献   

17.
对W波段三槽梯形线耦合腔慢波结构(包括大功率输入输出耦合器和射频窗)的加工和冷测进行了研究。此慢波结构由一个矩形波导耦合器馈电,该耦合器由放置在输入腔短边上的三阶阶梯变换矩形波导组成。首先,利用仿真方法研究了慢波结构的色散、互作用阻抗、传输特性和注-波互作用。结果表明,采用三槽梯形线耦合腔慢波结构的行波管能够在91~96 GHz的频率范围内提供大于1000 W的饱和输出功率,并且在94 GHz频点,饱和输出功率最大,可以达到1125 W。其次,采用高精度数控铣床加工出三槽梯形线慢波结构,并将其固定在非磁性不锈钢外壳中。文中给出了带有耦合器和射频窗的三槽梯形线慢波系统的测试结果,表明在90 GHz到100 GHz的频率范围内,S11<-10 dB。因此,三槽梯形线慢波结构在W波段大功率行波管方面具有应用前景。  相似文献   

18.
行波管具有大功率、高增益等优点,是雷达、电子对抗系统等武器装备的核心电子器件。采用一种新型慢波结构——非半圆弯曲变形折叠波导,设计出低电压、高效率、宽带W波段脉冲行波管,工作电压16 kV,电流125 mA,6 GHz带宽内输出功率大于125 W,增益大于34 dB,电子效率与总效率分别大于6.3%,25.7%。  相似文献   

19.
为分析折叠波导行波管互作用电路切断位置的功率和频谱特性,提出并研制出一只四端口W波段脉冲行波管。对该行波管频带内互作用电路的S参数、切断处功率和对应频谱特性进行测试,分析表明:端口2(输入段的切断)的功率幅值主要取决于饱和状态下行波管的输入功率,与输入段增益不成正比关系分布;端口3(输出段切断)功率主要取决于端口匹配性能,其数值计算功率和测试数据吻合良好。本文研究为毫米波及太赫兹行波管切断设计提供了一种有效方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号