首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design of efficient packet scheduling algorithms, which play a key role in the radio resource management (RRM), is crucial for the multimedia delivery in the satellite digital multimedia broadcasting (SDMB) system. In this paper, a novel packet scheduling scheme, which uses the cross-layer approach in its design, is proposed. This scheme comprises a new service prioritization algorithm and a dynamic rate matching based resource allocation algorithm, aimed at utilizing both the applications' QoS attributes and the physical layer data rate information. The performance of the proposed scheme has been evaluated via simulation. In comparison with existing schemes, the proposed scheme achieves significant performance gain on delay, delay variation and physical channel utilization.   相似文献   

2.
With their inherent broadcast capabilities and reliable extensive geographical coverage, the broadband satellite networks are emerging as a promising approach for the delivery of multimedia services in 3G and beyond systems. Given the limited capacity of the satellite component, to meet the diverse quality of service (QoS) demands of multimedia applications, it is highly desired that the available resources can be adaptively utilized in an optimized way. In this paper, we draw our attention on the development and evaluation of an efficient packet scheduling scheme in a representative broadband satellite system, namely satellite digital multimedia broadcasting (SDMB), which is positioned as one of the most attractive solutions in the convergence of a closer integration with the terrestrial mobile networks for a cost‐effective delivery of point‐to‐multipoint services. By taking into account essential aspects of a successful QoS provisioning while preserving the system power/resource constraints, the proposed adaptive multidimensional QoS‐based (AMQ) packet scheduling scheme in this paper aims to effectively satisfy diverse QoS requirements and adaptively optimize the resource utilization for the satellite multimedia broadcasting. The proposed scheme is formulated via an adaptive service prioritization algorithm and an adaptive resource allocation algorithm. By taking into account essential performance criteria, the former is capable of prioritizing contending flows based on the QoS preferences and performance dynamics, while the latter allocates the resources, in an adaptive manner, according to the current QoS satisfaction degree of each session. Simulation results show that the AMQ scheme achieves significantly better performance than those of existing schemes on multiple performance metrics, e.g. delay, throughput, channel utilization and fairness. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
With the growing demand for wireless multimedia services and continuing emergence of new multimedia applications, it is necessary for the network to provide various levels of quality of service (QoS) while maximizing the utilization of channel resources. This paper presents an adaptive queuing model and a novel cross-layer packet scheduling algorithm for providing differentiated QoS and effective channel utilization in a space-division-multiple-access/time-division-multiple-access (SDMA/TDMA) system. At the medium access control (MAC) layer, we take into consideration the heterogeneous and bursty nature of multimedia traffic and provide for QoS requirements. At the physical (PHY) layer, we exploit the randomness of the physical channel by incorporating opportunistic scheduling and adopting adaptive modulation and coding (AMC). Performance results obtained by simulations show that by employing the proposed queuing model and packet scheduling algorithm, the system is able to provide for diverse QoS and achieve high throughput.  相似文献   

4.
A novel radio resource management (RRM) scheme for the support of packet-switched transmission in cellular CDMA systems is proposed by jointly considering the physical, link, and network layer characteristics. The proposed resource management scheme is comprised of a combination of power distribution, rate allocation, service scheduling, and connection admission control. Power distribution allows individual connections to achieve their required signal-to-interference-plus-noise ratio, while rate allocation guarantees the required delay/jitter for real-time traffic and the minimum transmission rate requirement for non-real-time traffic. Efficient rate allocation is achieved by making use of the randomness and burstiness; of the packet generation process. At the link layer, a packet scheduling scheme is developed based on information derived from power distribution and rate allocation to achieve quality of service (QoS) guarantee. Packet scheduling efficiently utilizes the system resources in every time slot and improves the packet throughput for non-real-time traffic. At the network layer, a connection admission control (CAC) scheme based on the lower layer resource allocation information is proposed. The CAC scheme makes use of user mobility information to reduce handoff connection dropping probability (HCDP). Theoretical analysis of the grade of service performance, in terms of new connection blocking probability, HCDP, and resource utilization, is given. Numerical results show that the proposed RRM scheme can achieve both effective QoS guarantee and efficient resource utilization.  相似文献   

5.
To guarantee the quality of service (QoS) of a wireless network, a new packet scheduling algorithm using cross-layer design technique is proposed in this article. First, the demand of packet scheduling for multimedia transmission in wireless networks and the deficiency of the existing packet scheduling algorithms are analyzed. Then the model of the QoS-guaranteed packet scheduling (QPS) algorithm of high speed downlink packet access (HSDPA) and the cost function of packet transmission are designed. The calculation method of packet delay time for wireless channels is expounded in detail, and complete steps to realize the QPS algorithm are also given. The simulation results show that the QPS algorithm that provides the scheduling sequence of packets with calculated values can effectively improve the performance of delay and throughput.  相似文献   

6.
Efficient radio resource allocation is essential to provide quality of service (QoS) for wireless networks. In this article, a cross-layer resource allocation scheme is presented with the objective of maximizing system throughput, while providing guaranteed QoS for users. With the assumption of a finite queue for arrival packets, the proposed scheme dynamically a/locates radio resources based on user's channel characteristic and QoS metrics derived from a queuing model, which considers a packet arrival process modeled by discrete Markov modulated Poisson process (dMMPP), and a multirate transmission scheme achieved through adaptive modulation. The cross-layer resource allocation scheme operates over two steps. Specifically, the amount of bandwidth allocated to each user is first derived from a queuing analytical model, and then the algorithm finds the best subcarrier assignment for users. Simulation results show that the proposed scheme maximizes the system throughput while guaranteeing QoS for users.  相似文献   

7.
DVB-H、S-DMB技术比较分析   总被引:1,自引:0,他引:1  
新一代多媒体移动标准DVB-H和S-DMB最近十分引人关注。对DVB—H和S-DMB的多个方面进行介绍和分析。  相似文献   

8.
Providing quality of service (QoS) to different service classes with integrated real-time and non-real-time traffic is an important issue in broadband wireless access networks. Opportunistic MAC (OMAC) is a novel view of communication over spatiotemporally varying wireless link whereby the multi-user diversity is exploited rather than combated to maximize bandwidth efficiency or system throughput. It combines cross-layer design features and opportunistic scheduling scheme to achieve high utilization while providing QoS support to various applications. Channel characteristics, traffic characteristics and queue characteristics are the essential factors in the design of opportunistic scheduling algorithms. In this paper, we propose a cross-layer MAC scheduling framework in WiMAX point-to-multipoint (PMP) systems and a corresponding opportunistic scheduling algorithm with an adaptive power control scheme to provide QoS support to the heterogeneous traffic. Extensive simulation experiments have been carried out to evaluate the performance of our proposal. The simulation results show that our proposed solution can improve the performance of the WiMAX PMP systems in terms of packet loss rate, packet delay and system throughput.  相似文献   

9.
The authors propose a physical-datalink cross-layer resource allocation scheme over wireless relay networks for quality-of-service (QoS) guarantees. By integrating information theory with the concept of effective capacity, the proposed scheme aims at maximizing the relay network throughput subject to a given delay QoS constraint. This delay constraint is characterized by the so-called QoS exponent thetas, which is the only requested information exchanged between the physical layer and the datalink layer in our cross-layer design based scheme. Over both amplify-and-forwards (AF) and decode-and-forward (DF) relay networks; the authors develop the associated dynamic resource allocation algorithms for wireless multimedia communications. Over DF relay network, the authors also study a fixed power allocation scheme to provide QoS guarantees. The simulations and numerical results verify that our proposed cross-layer resource allocation can efficiently support diverse QoS requirements over wireless relay networks. Both AF and DF relays show significant superiorities over direct transmissions when the delay QoS constraints are stringent. On the other hand, the results demonstrate the importance of deploying the dynamic resource allocation for stringent delay QoS guarantees.  相似文献   

10.
地球同步轨道(GEO)卫星通信系统具有通信时延长的特点,适用于GEO卫星长期演进(LTE)通信的资源调度算法非常重要。为提升星上资源分配的高效性,基于可变最大加权时延优先(M-LWDF)算法,提出了一种综合考虑媒体接入控制(MAC)层参数和应用层参数的跨层调度算法。该算法在MAC层从数学角度推导,提出权重更大的时延判决因子及在应用层根据业务优先级不同引入Q因子。仿真结果表明,与M-LWDF算法相比,不同业务情况下,跨层资源调度算法减小了通信时延,提高了系统吞吐量,但公平性能略有下降并增加了复杂度。  相似文献   

11.
Base stations in next-generation broadband mobile networks (NGBMNs) must efficiently schedule different kinds of multimedia packets providing different quality of service (QoS) classes. During the past 10?years, many researchers have experimented with various packet scheduling schemes. In this paper we will propose a batch-arrival queuing model for evaluating NGBMN multimedia packet scheduling systems, and for obtaining three performance measures: packet loss rate (PLR), queuing delay (QD), and bandwidth utilization (BU). The three measures can be used to solve utilization optimization problems with QoS constraints. Specifically, a combination of a traffic statistic plus maximum PLR and QD constraints can be used to maximize BU for a multimedia packet scheduling management architecture. According to results from mathematical tests of the proposed model, it offers an efficient approach to managing scheduling buffers. The model and optimized parameters can be applied to flexible bandwidth deployment and classified buffer size control, thus enhancing profitability.  相似文献   

12.
In this article we propose a cross-layer design model for multimedia multicast/broadcast services to efficiently support the diverse quality of service requirements over mobile wireless networks. Specifically, we aim at achieving high system throughput for multimedia multicast/broadcast while satisfying QoS requirements from different protocol layers. First, at the physical layer, we propose a dynamic rate adaptation scheme to optimize the average throughput subject to the loss rate QoS constraint specified from the upper-layer protocol users. We investigate scenarios with either independent and identically distributed (i.i.d.) or non-i.i.d. fading channels connecting to different multicast receivers. Then, applying the effective capacity theory at the data link layer, we study the impact of the delay QoS requirement (i.e., QoS exponent) on the multimedia data rate of mobile multicast/broadcast that our proposed scheme can support. Also presented are simulation results which show the trade-off among different QoS metrics and the performance superiority of our proposed scheme as compared to the other existing schemes.  相似文献   

13.
Efficient utilization of network resources is a key goal for emerging broadband wireless access systems (BWAS). This is a complex goal to achieve due to the heterogeneous service nature and diverse quality of service (QoS) requirements of various applications that BWAS support. Packet scheduling is an important activity that affects BWAS QoS outcomes. This paper proposes a novel packet scheduling mechanism that improves QoS in mobile wireless networks which exploit IP as a transport technology for data transfer between BWAS base stations and mobile users at the radio transmission layer. In order to improve BWAS QoS the new packet algorithm makes changes at both the IP and the radio layers. The new packet scheduling algorithm exploits handoff priority scheduling principles and takes into account buffer occupancy and channel conditions. The packet scheduling mechanism also incorporates the concept of fairness. Performance results were obtained by computer simulation and compared to the well known algorithms. Results show that by exploiting the new packet scheduling algorithm, the transport system is able to provide a low handoff packet drop rate, low packet forwarding rate, low packet delay and ensure fairness amongst the users of different services.  相似文献   

14.
Mobile Internet access is expected to be the most popular communication service in the near future. In this paper, we investigate radio resource management for mobile Internet multimedia systems that use the orthogonal frequency division multiple access and adopt the adaptive modulation and coding technique. It is assumed that real-time (RT) service such as streaming video and best-effort (BE) services such as file transfer protocol and hypertext transfer protocol coexist in the systems. We suggest two levels of radio resource management schemes: the connection admission control (CAC) scheme at the first level and the packet transmission scheduler at the second level. The proposed scheduler does not assign higher priority to RT packets over BE packets unconditionally. Instead, only the RT packets that are close to the deadline are given higher priority. Therefore, the performance of BE services is improved at the cost of RT services. To control the performance degradation in RT services within an acceptable level, the CAC algorithm functions as a congestion controller. The combined effects of the proposed CAC and packet scheduling by using the cross-layer simulation that covers from the physical layer to the Internet application layer are evaluated. The numerical results show that the proposed schemes greatly improve the performance of BE services while maintaining the quality of video service at an acceptable level.  相似文献   

15.
该文提出了一种适用于多用户正交频分复用(OFDM)系统下行链路的调度算法,基于跨层结构设计,并分别考虑了媒体接入控制(MAC)层的用户服务质量(QoS)要求、用户公平性、数据包队列状态信息以及物理层的信道状态信息(CSI)和功率约束等。多用户OFDM系统可以通过该调度算法充分利用MAC层和物理层的不同参数特性,在保证用户QoS的同时最大化频谱的利用效率。仿真结果表明,在小区内各个移动用户具有不同的接收SNR的情况下,该算法具有服务质量随信噪比波动平缓、丢包率低、实现复杂度低等特点。  相似文献   

16.
一种适用于W-CDMA系统的多业务无线资源调度算法   总被引:1,自引:0,他引:1       下载免费PDF全文
雷春娟  曹晏波  李承恕 《电子学报》2003,31(7):1005-1007,1021
3G系统将以分组交换方式提供语音、数据、视频等具有不同QoS要求的多种业务,资源调度对保证系统服务质量和提高资源利用效率起关键作用.本文提出了一种基于业务类型、当前待发送负荷以及剩余延时限的时间调度策略和基于资源优化的资源调度策略,并使无线链路的传输质量与业务的优先级水平一致.通过系统仿真评价了算法的性能.  相似文献   

17.
Abstract-In a wireless multimedia code division multiple access (CDMA) system, the resources in terms of transmission rate and power should be efficiently distributed to each user to guarantee its quality-of-service (QoS) requirements. In, this paper, a resource allocation algorithm which combines packet scheduling and power assignment is proposed to achieve efficient resource utilization under QoS constraints. The packet scheduling is based on the fair packet loss sharing (FPLS) principle, and the power assignment is determined by the received power limited (RPL) scheme. The basic idea of FPLS is to schedule the transmission of multimedia packets in such a way that, all the users have a fair share of packet loss according to their QoS requirements, which maximizes the number of the served users with QoS satisfaction. The RPL scheme minimizes the received power for each packet. Given the propagation path loss, it in turn minimizes the transmitted power as well. The intercell interference from the scheduled packets is also limited in order to increase the system capacity.  相似文献   

18.
In this paper, we consider the problem of distributed scheduling for overlay inband device-to-device (D2D) communication systems that employ an orthogonal frequency division multiple access physical layer technology. To improve the spatial reuse gain, we propose a multi-channel-based scheduling algorithm that divides the overall radio resource dedicated to D2D communication into multiple data channels and schedules the links allocated to each channel based on a signal-to-interference-aware priority-based scheduling method. Further, we develop a cross-layer queueing model to analyze the medium-access-control layer performance of the proposed scheduling algorithm and compare the analytic results with the simulation results. We demonstrate that the proposed scheduling algorithm outperforms the existing single one-channel-based algorithm to provide lower packet dropping probability, higher spectral efficiency, and lower packet delay.  相似文献   

19.
Quality-driven cross-layer optimized video delivery over LTE   总被引:2,自引:0,他引:2  
3GPP Long Term Evolution is one of the major steps in mobile communication to enhance the user experience for next-generation mobile broadband networks. In LTE, orthogonal frequency- division multiple access is adopted in the downlink of its E-UTRA air interface. Although cross-layer techniques have been widely adopted in literature for dynamic resource allocation to maximize data rate in OFDMA wireless networks, application-oriented quality of service for video delivery, such as delay constraint and video distortion, have been largely ignored. However, for wireless video delivery in LTE, especially delay-bounded real-time video streaming, higher data rate could lead to higher packet loss rate, thus degrading the user-perceived video quality. In this article we present a new QoS-aware LTE OFDMA scheduling algorithm for wireless real-time video delivery over the downlink of LTE cellular networks to achieve the best user-perceived video quality under the given application delay constraint. In the proposed approach, system throughput, application QoS constraints, and scheduling fairness are jointly integrated into a cross-layer design framework to dynamically perform radio resource allocation for multiple users, and to effectively choose the optimal system parameters such as modulation and coding scheme and video encoding parameters to adapt to the varying channel quality of each resource block. Experimental results have shown significant performance enhancement of the proposed system.  相似文献   

20.
Cross-layer QoS Analysis of Opportunistic OFDM-TDMA and OFDMA Networks   总被引:1,自引:0,他引:1  
Performance analysis of multiuser orthogonal frequency division multiplexing (OFDM-TDMA) and orthogonal frequency division multiple access (OFDMA) networks in support of multimedia transmission is conducted in this work. We take a cross-layer approach and analyze several quality-of-service (QoS) measures that incilude the bit rate and the bit error rate (BER) in the physical layer, and packet average throughput/delay and packet maximum delay in the link layer. The authors adopt a cross-layer QoS framework similar to that in IEEE 802.16, where service classification, flow control and opportunistic scheduling with different subcarrier/bit allocation schemes are implemented. In the analysis, the Rayleigh fading channel in the link layer is modeled by a finite-state Markov chain, and the channel state information (CSI) is assumed to be available at the base station. With the M/G/1 queueing model and flow control results, the analysis provides important insights into the performance difference of these two multiaccess systems. The derived analytical results are verified by extensive computer simulation. It is demonstrated by analysis and simulation that OFDMA outperforms OFDM-TDMA in QoS metrics of interest. Thus, OFDMA has higher potential than OFDM-TDMA in supporting multimedia services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号