首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
给出了圆形冷屏限制下长线列器件光敏元立体角的数学模型.以288×4器件为例,计算了光敏元立体角的变化趋势.将这些立体角的相对值投影到0~255的整数值范围,可以得到一张伪灰度图,该图可以从某种程度上反映理想情况下器件的成像效果.  相似文献   

2.
红外焦平面探测器辐射非均匀性校正方法   总被引:1,自引:0,他引:1       下载免费PDF全文
大面阵红外焦平面探测器的应用日趋广泛,而面阵的不断增大会导致很多不可避免的成像误差,对最终成像效果有较大影响,有必要对其进行校正。在红外焦平面探测器输出信号参数的测试中,针对圆形冷屏限制的红外焦平面分析比较了两种辐射非均匀性校正方法,一种方法为建立光敏元立体角的数学模型,用SolidWorks和MATLAB等软件求出这些立体角从而得到校正因子;另一种方法为从光敏元的视场角ω′出发,按辐射光照度以cos4ω′衰减的规律进行校正。以320×320红外焦平面探测器为例,从面阵中选取均匀性较好的若干行作为样本,对其测试数据进行校正。分析表明,两种方法校正后的曲线较为平直,但第二种方法的校正效果比较理想,可见视场角校正法对数据的非均匀性有较大改善。因此,为了真实地反映探测器的非均匀性,需要对像元辐射通量进行校正。  相似文献   

3.
以圆形冷屏中的640×512面阵器件为例,基于几何光学的基本原理,将冷屏内壁表面辐射抽象为一定数量、可用MATLAB随机产生的几何光线.追踪这些光线的去向,统计出其中直接投射、或者经过一次反射后落入探测器各光敏元的光线数量,通过直方图、散落点图等途径分析冷屏内壁表面辐射光线在探测器芯片上的分布状态.  相似文献   

4.
1 工作原理该面阵 CCD 摄象器件为内线转移器件,是由756(H)×581(V)个光敏元组成的光敏元列阵,垂直 CCD 移位寄存器、水平移位寄存器和输出检测四个部分组成。器件采用隔行扫描工作模式,两个光敏元对应一个 V-  相似文献   

5.
根据光电理论和探测器的工作原理,推导出了一种电荷耦合器件(CCD)摄像机面阵探测器调制传递函数,得到了一定入射条件下光敏元的输出电子数目。  相似文献   

6.
室温铟镓砷(InGaAs)焦平面技术在航天工业上的应用越来越广泛,铟镓砷(InGaAs)焦平面列阵中探测器的尺寸正不断减小,这使得常规工艺形成的光伏探测器,其有效光敏元面积扩大的问题越来越突出.本文利用激光诱导电流检测(LBIC)系统测试了平面结InGaAs(P-I-N)探测器芯片的光敏元,证实了有效光敏面扩大的存在.从实验结果看,掺杂离子的横向扩散和结区的侧向收集效应,是平面工艺形成的光伏器件光敏元面积扩大的主要因素,并利用得到的实验数据拟合求出了器件少子的扩散长度.  相似文献   

7.
液晶微透镜是一种新型光学器件.通过改变驱动电压,可以灵活快捷地改变其通光孔径、焦距和波前等.设计并得到了一种面阵液晶微透镜器件,讨论了通过将此面阵液晶微透镜与红外焦平面探测器的混合集成,得到具有自适应功能的红外焦平面探测结构.分析了该混合探测结构的性能特点及应用方向.  相似文献   

8.
报道了128×128元InAs/GaSb Ⅱ类超晶格红外焦平面阵列探测器的研究成果.实验采用分子束外延技术在GaSb衬底上生长超晶格材料.红外吸收区结构为13 ML(InAs)/9 ML(GaSb),器件采用PIN结构,焦平面阵列光敏元大小为40μm×40μm.通过台面形成、侧边钝化和金属电极生长,以及与读出电路互连等工艺,得到了128×128面阵长波焦平面探测器.在77 K时测试,器件的100%截止波长为8μm,峰值探测率6.0×109cmHz1/2W-1.经红外焦平面成像测试,探测器可得到较为清晰的成像.  相似文献   

9.
报道了128×128元InAs/GaSb Ⅱ类超晶格红外焦平面阵列探测器的研究成果.实验采用分子束外延技术在GaSb衬底上生长超晶格材料.红外吸收区结构为13 ML(InAs)/9 ML(GaSb),器件采用PIN结构,焦平面阵列光敏元大小为40 μm×40μm.通过台面形成、侧边钝化和金属电极生长,以及与读出电路互连等工艺,得到了128×128面阵长波焦平面探测器.在77 K时测试,器件的100%截止波长为8μm,峰值探测率6.0×109 cmHz1/2 W-1.经红外焦平面成像测试,探测器可得到较为清晰的成像.  相似文献   

10.
报道了320×256元In As/Ga SbⅡ类超晶格长波红外焦平面阵列探测器的研制和性能测试.采用分子束外延技术在Ga Sb衬底上生长超晶格材料,器件采用PBIN结构,红外吸收区结构为14 ML(In As)/7 ML(Ga Sb),焦平面阵列光敏元尺寸为27μm×27μm,中心距为30μm,通过刻蚀形成台面、侧边钝化和金属接触电极生长,以及与读出电路互连等工艺,得到了320×256面阵长波焦平面探测器.在77 K温度下测试,焦平面器件的100%截止波长为10.5μm,峰值探测率为8.41×109cm Hz1/2W-1,盲元率为2.6%,不均匀性为6.2%,采用该超晶格焦平面器件得到了较为清晰的演示性室温目标红外热成像.  相似文献   

11.
甚长波红外波段富含大气湿度、CO2含量及云层结构和温度轮廓等大量信息,是大气遥感的重要组成部分。设计了一种3232甚长波红外焦平面阵列,采用在ZnCdTe衬底上液相外延生长的As掺杂p型材料上进行B+离子注入形成光敏元,通过铟柱倒焊技术和带有改进型背景抑制结构的读出电路互联,制成截止波长达到14 m的焦平面器件。该红外焦平面器件像元面积为60 m60 m,工作温度在50 K温度下。测试结果显示:读出电路性能良好,焦平面黑体响应率达到1。35107V/W,峰值探测率为2。571010 cmHz1/2/W,响应率非均匀性约为45%,盲元率小于12%。  相似文献   

12.
用蒙特卡罗方法和MATLAB计算矩形冷屏的视场角   总被引:3,自引:1,他引:2  
红外探测器杜瓦组件是制冷型红外成像系统的一个重要组成部分.在探测器杜瓦中,常用冷屏来限制探测器在各尺度上的立体角.探测器和冷屏的几何构造控制了外部场景(目标和背景)在探测器上的辐照度.冷屏有各种形式的孔径,除了圆形孔径有解析公式以外,其他形式的冷屏对应的视场角一般需要做数值计算.介绍了一种利用蒙特卡罗原理和MATLAB计算矩形冷屏视场角的简捷方法.与其他方法相比,该方法具有编程简单、精度可控、使用便捷等特点.  相似文献   

13.
An optical readout uncooled infrared (IR) imaging detector of bimaterial cantilever array using knife-edge filter operation (KEFO) is demonstrated. The angle change of each cantilever in a focal plane array (FPA) can be simultaneously detected with a resolution of 10-5 degree. A deformation magnifying substrate-free micro-cantilever unit with multi-fold interval metallized legs is specially designed and modeled. A FPA with 160×160 pixels is fabricated and thermal images with noise equivalent temperature difference (NETD) of 400 mK are obtained by this imaging detector.  相似文献   

14.
This paper proposes a robust approach to color image noise removal that efficiently eliminates noisy pixels by exploiting several vector-class characteristics of multichannel pixels. This algorithm treats multichannel images as a vector class and takes both magnitude and phase angles of the pixel vectors into consideration. It consists of two steps: an efficient noise detector based on pixel vector angle statistics and impulse noise filtering with a hybrid of vector magnitude and vector angle function. Extensive experimental results demonstrate that the proposed approach significantly outperforms several other well-known techniques for color image noise removal.  相似文献   

15.
吴昊  朱一帆  丁青峰  张金峰  上官阳  孙建东  秦华 《红外与激光工程》2022,51(12):20220225-1-20220225-7
为充分发挥AlGaN/GaN高电子迁移率晶体管 (High-Electron-Mobility Transistor, HEMT)太赫兹探测器阵列的高电子迁移率优势,文中研究了HEMT太赫兹探测器阵列在77 K下的探测特性。使用液氮杜瓦为降温主体搭建了适用于焦平面 (Focal-Plane Array, FPA)芯片的低温系统,实现了对焦平面芯片常温与低温下的对比测试。温度从300 K降到77 K时,探测器阵列像元的平均响应度提高近3倍,平均噪声有小幅增大,340 GHz时平均噪声等效功率 (Noise Equivalent Power, NEP)从45.1 pW/Hz1/2降低到了19.4 pW/Hz1/2,灵敏度提高两倍以上。与硅透镜耦合的单元探测器相比,阵列像元的灵敏度提升仍有较大空间。主要是由于各像素点最佳工作电压的不一致,导致在给定统一工作电压下像元间的响应度和噪声都表现出较大的离散性,文中讨论了降低最佳工作电压离散度的可能解决方案。  相似文献   

16.
数字太阳敏感器成像建模与仿真   总被引:1,自引:1,他引:0       下载免费PDF全文
为了仿真太阳光的成像情况,基于标量衍射理论、辐射度学建立了包括光学系统模型和光电转换模型在内的完整的数字太阳敏感器成像模型。该模型适用于视场范围内任意角度入射的太阳光。同时,该模型所包含的从太阳辐射到成像面上像元灰度的能量转换体系完整准确。将太阳辐射作为模型输入进行了数值仿真,并与基于太阳模拟器的地面实验结果进行了对比分析。结果表明,该成像模型能比较准确地模拟太阳光的成像情况。该研究为后续的基于太阳敏感器的太阳光和杂散光成像仿真和对比研究提供了基础。  相似文献   

17.
李建林  谢刚  刘炼  陈晓燕  董伟  雷永畅 《红外与激光工程》2021,50(2):20200202-1-20200202-12
中波或长波红外焦平面阵列有效像元率递减的变化趋势,必然是由制造工艺缺陷、特定的工作应力或环境应力引起的某种机理造成。根据红外探测器输出信号电压的数学模型,通过信号传输分析、性能评价测试数据统计分析,运用统计图形、响应曲线及输出信号电压灰度图等可视化手段,直观地呈现无效像元的类型、数量、位置、分布,以及像元信号电压、噪声电压和响应电压等无效像元特性。统计分析显示,像元中心距15 μm的中波320×256探测器杜瓦制冷机组件,在使用过程中平均表观有效像元率相对于初始有效像元率减小1.07个百分点,平均有86.45%的表观无效像元为不稳定的闪元和漂移像元,设计和制造缺陷导致使用无效像元的响应直线呈水平状、响应电压趋于0,热适配引起的应力是造成线状分布使用无效像元簇的原因。提出用不同黑体温度条件下像元信号电压超出平均值±(6%~7.5%)的判别准则筛选识别无效像元的方法。  相似文献   

18.
谢珩  王宪谋  王骏 《激光与红外》2017,47(3):319-321
介绍了倒装互连技术的工艺原理,阐述了红外焦平面器件倒装互连的工艺特点。通过系列实验和分析,最终优化并确定了百万像素级红外焦平面器件倒装互连的工艺参数,获得了良好的互连效果。  相似文献   

19.
陈楠  张济清  毛文彪  李雄军  宋林伟  高玲  姚立斌 《红外与激光工程》2022,51(3):20210821-1-20210821-11
长波红外探测器一直以来受到读出电路电荷存储容量的限制,导致信噪比、动态范围和灵敏度都难以提升,制约了长波红外成像系统的发展和应用。文中对比分析了模拟像元和数字像元读出电路技术,介绍了数字像元焦平面的发展现状和主要架构。采用脉冲频率调制方案设计了384×288(25 μm)和256×256 (30 μm)两款数字像元读出电路,其中比较器设计提高了功耗效率和强壮性,并耦合碲镉汞探测器形成长波数字焦平面探测器组件进行测试,结果与国内外相关工作进行比较分析,峰值噪声等效温差分别达到3.4 mK和1.9 mK,动态范围达到96 dB。测试结果表明,数字像元技术显著提升了长波红外焦平面的灵敏度和动态范围,是提高红外探测器性能的有效途径。  相似文献   

20.
国产线列TDI型红外探测器组件在红外系统中的应用越来越广泛,但由于加工材料和制造工艺等因素的影响,探测器组件存在坏元,将造成图像质量下降,图像灰度分布失真,进而影响红外系统的性能。本文介绍了576×6线列TDI型红外探测器组件的读出电路坏元替代方法,采用该方法可进行线列TDI型红外探测器组件通道内的坏元替代,提高图像质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号