首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four different diketopyrrolopyrrole (DPP)-based small molecules (SMs) with A–D–A type structure were synthesized, where electron-donating unit (D) was systematically varied with different electron-donating power (thiophene vs. phenylene; thienothiophene vs. naphthalene) and different molecular planarity (bithiophene vs. thienothiophene; and biphenylene vs. naphthalene). The small molecules with weak donating unit (phenylene or naphthalene) have deeper HOMO energy levels than those with strong donating unit (thiophene or thienothiophene), and thus exhibit higher VOC. When the fused aromatic ring (thienothiophene or naphthalene) with planar molecular structure is introduced in SMs, the SMs exhibit high hole mobility and thus afford high JSC. As a result, the introduction of naphthalene (weak donating power and planar structure) enhances both VOC and JSC, resulting in a promising power conversion efficiency of 4.4%. This result provides a valuable guideline for rational design of conjugated small molecules for high performance organic solar cells.  相似文献   

2.
Lead chalcogenide quantum dot (QD) infrared (IR) solar cells are promising devices for breaking through the theoretical efficiency limit of single-junction solar cells by harvesting the low-energy IR photons that cannot be utilized by common devices. However, the device performance of QD IR photovoltaic is limited by the restrictive relation between open-circuit voltages (VOC) and short circuit current densities (JSC), caused by the contradiction between surface passivation and electronic coupling of QD solids. Here, a strategy is developed to decouple this restriction via epitaxially coating a thin PbS shell over the PbSe QDs (PbSe/PbS QDs) combined with in situ halide passivation. The strong electronic coupling from the PbSe core gives rise to significant carrier delocalization, which guarantees effective carrier transport. Benefited from the protection of PbS shell and in situ halide passivation, excellent trap-state control of QDs is eventually achieved after the ligand exchange. By a fine control of the PbS shell thickness, outstanding IR JSC of 6.38 mA cm−2 and IR VOC of 0.347 V are simultaneously achieved under the 1100 nm-filtered solar illumination, providing a new route to unfreeze the trade-off between VOC and JSC limited by the photoactive layer with a given bandgap.  相似文献   

3.
Ternary organic photovoltaics (OPVs) were fabricated with two polymers (PM6 and D18) as the donor and the fullerene-free small molecule Y6 as the acceptor in an inverted structure. The blueshifted absorption spectrum of neat D18 relative to neat PM6 can enable harvesting of more short and medium wavelength photons in the ternary photoactive layer, which is beneficial to increasing the short-circuit current density (JSC). The enhancement of the open-circuit voltage (VOC) of the ternary OPVs can be explained by the deeper HOMO level of D18 than that of PM6, which is beneficial to broadening the energy bandgap. In addition, the combination of the cascade LUMO levels among D18, PM6 and Y6 and the enhanced crystallinity can lead to more efficient exciton dissociation and charge transport within the ternary films. As a result, the power conversion efficiency of the optimize ternary OPV is 15.85%, which is higher than those of the PM6:Y6- and D18:Y6-base binary OPVs (PCEs of 14.70% and 14.95%, respectively). The results indicate that ternary OPVs with a blend of two similar chemical structure polymers as the donor could achieve high performance by broadening the light spectrum and optimizing the phase separation and crystallinity.  相似文献   

4.
Two donor–acceptor (D−A) copolymers, PEHBDT-BTz and PODBDT-BTz, containing the same backbone of benzodithiophene (BDT) and bithiazole (BTz) units but different side chains were designed and synthesized. Effects of the side chains of BDT and BTz units on solubility, absorption spectra, energy levels, film morphology, and photovoltaic properties of the polymers were investigated. Results showed that the more branched side chains could increase the molecular weight and the introduction of alkylthienyl groups into BTz unit benefits to broaden the absorption and lower the bandgaps as well as deepen HOMO levels, which are propitious to improve the short-circuit current density (Jsc) and open-circuit voltage (Voc) of photovoltaic cells. Polymer solar cells (PSCs) were prepared with the polymers as electron donors and PCBM as an acceptor. The device fabrication conditions, including the additive, the different acceptor and blend ratio of the polymer donor and acceptor, have been optimized. PCE of PSCs based on the copolymers varied from 2.92% for PODBDT-BTz to 3.71% for PEHBDT-BTz, depending on the type and topology of the side chains on the BDT moiety. The results indicate that an appropriate choice of side chains on the backbone is an effective way to improve photovoltaic performance of the related PSCs.  相似文献   

5.
Introducing a third component into organic bulk heterojunction solar cells has become an effective strategy to improve photovoltaic performance. Meanwhile, the rapid development of non-fullerene acceptors (NFAs) has pushed the power conversion efficiency (PCE) of organic solar cells (OSCs) to a higher standard. Herein, a series of fullerene-free ternary solar cells are fabricated based on a wide bandgap acceptor, IDTT-M, together with a wide bandgap donor polymer PM6 and a narrow bandgap NFA Y6. Insights from the morphological and electronic characterizations reveal that IDTT-M has been incorporated into Y6 domains without disrupting its molecular packing and sacrificing its electron mobility and work synergistically with Y6 to regulate the packing pattern of PM6, leading to enhanced hole mobility and suppressed recombination. IDTT-M further functions as an energy-level mediator that increases open-circuit voltage (VOC) in ternary devices. In addition, efficient Förster resonance energy transfer (FRET) between IDTT-M and Y6 provides a non-radiative pathway for facilitating exciton dissociation and charge collection. As a result, the optimized ternary device features a significantly improved PCE up to 16.63% with simultaneously enhanced short-circuit current (JSC), VOC, and fill factor (FF).  相似文献   

6.
Poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction (BHJ) solar cells are one of archetypal polymer photovoltaic devices. Understanding the relationship between electronic properties and active layer morphology is essential to obtain high-performance electronic devices. The magnitudes of the short circuit current (JSC), the fill factor (FF) and the open circuit voltage (VOC) will vary on the basis of changes in phase purity, interfacial region area and domain size of the active layer. We investigated the device characteristics of the samples having comparable phase purity and found that the performance parameters were better in the device having larger interfacial region area. In another case the phase purity decreases, the interfacial area increases and the recombination rate increases, resulting FF and VOC increase, JSC first increases then decreases. Power conversion efficiency (PCE) increases with the increase of interfacial region area, although at the same time associates with the decrease of the phase purity. The device efficiency reaches optimal value by balance the phase purity and the interfacial area. We finally investigated the two devices where, in spite of significant difference between domain dimensions, the PCEs were quite similar. Especially, the devices having large micrometer scale PCBM crystals also obtain good PCEs if they have enough interfacial areas.  相似文献   

7.
Nanocrystal V2O5 dispersion processed thin films are introduced as efficient hole extraction interlayer in normal architecture P3HT:PCBM solar cells. Both thin and rather thick interlayers are studied and demonstrated to work properly in organic photovoltaic. Nanocrystal V2O5V2O5 layers effectively block electrons and effectively extract holes at the ITO anode. Very constant and high VOC (above 0.56 V) are easily achieved. Comparable JSC and PCE are demonstrated for nanocrystal dispersion-processed devices when compared with amorphous sol–gel processed devices. The excellent functionality of nanocrystal V2O5 interlayers in Si-PCPDTBT:PCBM devices further demonstrates the broad application potential of this material class for photovoltaic applications.  相似文献   

8.
Organic solar cells have received widespread attention with the development of indoor light harvesters. Due to the narrow emission spectra and weak light intensity of indoor emissions, the short-circuit current of indoor devices is largely restricted, and there would be an additional voltage loss around 0.15 V from the light intensity difference. However, most state-of-the-art cells cannot be adopted as indoor photovoltaics directly, because their small optical bandgaps lead to open-circuit voltage (VOC) values in the range of ~0.6 V in dim-lighting, which is difficult to drive most of internet of things. Herein, we revaluate the photovoltaic performance under indoor illuminances by combining a wide-gap polymer PBDB-T with various electron-accepting materials. The PBDB-T: BTA3 cell achieves an excellent efficiency higher than 25% under a 1000 lux 2700K LED illumination. The VOC value of such a device can still maintain close to 1 V under indoor cases. We then compare the underlying mechanism of the PBDB-T-based bulk heterojunctions (BHJs) with multiple techniques, and the results indicate the unchanged advantage of high VOC helps the BTA3-based cell shows the best indoor device performance when the light source is switched from AM1.5G to low illumination. This work revaluates the selection of state-of-the-art indoor light harvesters, and demonstrate an excellent optimal efficiency of the PBDB-T:BTA3 indoor cell up to 25.6%, with a desirable VOC of 0.99 V.  相似文献   

9.
The elaborate balance between the open-circuit voltage (VOC) and the short-circuit current density (JSC) is critical to ensure efficient organic solar cells (OSCs). Herein, the chalcogen containing branched chain engineering is employed to address this dilemma. Three novel nonfullerene acceptors (NFAs), named BTP-2O , BTP-O-S , and BTP-2S , featuring different peripheral chalcogen containing branched chains are synthesized. Compared with symmetric BTP-2O and BTP-2S grafting two alkoxy or alkylthio branched chains, the asymmetric BTP-O-S grafting one alkoxy and one alkylthio branched chains shows mediate absorption range, applicable miscibility, and favorable crystallinity. Benefiting from the enhanced π–π stacking and charge transport, an optimal power conversion efficiency (PCE) of 17.3% is obtained for the PM6: BTP-O-S -based devices, with a good balance between VOC (0.912 V) and JSC (24.5 mA cm−2), and a high fill factor (FF) of 0.775, which is much higher than those of BTP-2O (16.1%) and BTP-2S -based (16.4%) devices. Such a result represents one of the highest efficiencies among the binary OSCs with VOC surpassing 0.9 V. Moreover, the BTP-O-S -based devices fabricated by using green solvent yield a satisfactory PCE of 17.1%. This work highlights the synergistic effect of alkoxy and alkylthio branched chains for high-performance OSCs by alleviating voltage loss and enhancing FF.  相似文献   

10.
To maximize the short‐circuit current density (JSC) and the open circuit voltage (VOC) simultaneously is a highly important but challenging issue in organic solar cells (OSCs). In this study, a benzotriazole‐based p‐type polymer (J61) and three benzotriazole‐based nonfullerene small molecule acceptors (BTA1‐3) are chosen to investigate the energetic driving force for the efficient charge transfer. The lowest unoccupied molecular orbital (LUMO) energy levels of small molecule acceptors can be fine‐tuned by modifying the end‐capping units, leading to high VOC (1.15–1.30 V) of OSCs. Particularly, the LUMO energy level of BTA3 satisfies the criteria for efficient charge generation, which results in a high VOC of 1.15 V, nearly 65% external quantum efficiency, and a high power conversion efficiency (PCE) of 8.25%. This is one of the highest VOC in the high‐performance OSCs reported to date. The results imply that it is promising to achieve both high JSC and VOC to realize high PCE with the carefully designed nonfullerene acceptors.  相似文献   

11.
Differential scanning calorimetry (DSC) and atomic force microscopy (AFM) measurements indicate that 1,2,3,4-bis(p-methylbenzylidene) sorbitol (MDBS) is a nucleating agent for both poly(3-alkylthiophene)s (P3ATs) and [6,6]-phenyl C61-butyric acid methyl ester (PCBM), but the intermolecular interaction between P3AT and MDBS is stronger than that between PCBM and MDBS. MDBS regulates the crystallization kinetics of P3AT in P3AT/PCBM blend films, resulting in the acceleration of the crystallization rate, and the decrease of the crystallinity and crystallite size of P3AT. This directly causes the decrease of the open circuit voltage (VOC) and the increase of both the fill factor (FF) and the short circuit current (JSC) with the addition of MDBS. Based on the variation of VOC, FF, and JSC, the power conversion efficiency (PCE) of P3AT/PCBM BHJ OPV devices improves with the addition of MDBS. Our work verifies that this is a new way to modulate and improve the performance parameters of BHJ OPV devices, i.e., by adding a nucleating agent that modulates the crystallization kinetics of crystalline donor materials.  相似文献   

12.
Three novel conjugated copolymers based on thiophene-2,5-bis((2-ethylhexyl)oxy)benzene-thiophene (TBT) as electron-donating units, either isoindigo or both isoindigo and diketopyrrolopyrrole (DPP) as electron-withdrawing units have been designed and synthesized by Stille-coupling reaction. All the polymers exhibit high thermal stability, broad absorption in the range of 300–800 nm, and the low-lying energy level of highest occupied molecular orbits (HOMO) (−5.47 to −5.19 eV). After introduced with additional hexylthiophenes and further introduced with DPP units, the polymers PTBT-HTID and PTBT-HTID-DPP show smaller lamellar distance and π–π stacking distance, and the morphology of the corresponding photoactive layers possess more appropriate microphase separation and smaller domain size, which lead to high short circuit current densities (Jsc) and power conversion efficiency (PCE). The polymer photovoltaic devices based on PTBT-HTID-DPP/PC61BM exhibit a high Jsc value of 11.13 mA cm−2, a fill factor (FF) of 0.57, and the PCE of 4.2%.  相似文献   

13.
Investigation on the relationship between molecular structure and device performance is of great important to develop highly efficient A-π-D-π-A small molecular acceptors (SMAs). However, there is still lack of a complete and in-depth study on effects of π-bridge on molecular structure, optoelectronic properties and photovoltaic performances. Herein, we reported the design, synthesis and photovoltaic application of four A-π-D-π-A type SMAs, denoted as IDT-Py-IC, IDT-Fu-IC, IDT-Th-IC, and IDT-Ph-IC, which possess an identical central D unit of indacenodithiophene and the terminal A group of 3-(dicyanomethylidene)indol-1-one, linked by various aromatic π-bridges of pyrrole, furan, thiophene, and benzene, respectively. The impact of the different aromatic π-bridge on molecular structures, optoelectronic and photovoltaic properties as well as active layer morphologies was comprehensively explored. Results show that both molecular co-planarity and electron-donating ability of aromatic π-bridges distinctly affect optical bandgaps (Egopt) and HOMO/LUMO levels of these SMAs. The poor backbone planarity of pyrrole-bridged IDT-Py-IC observed by theory calculation leads to a blue-shifted absorption and up-shifted HOMO/LUMO levels. The Egopt of these SMAs is gradually increased and HOMO levels are gradually down-shifted with the decrease of the electron-donating ability of aromatic π-bridges. Polymer solar cells (PSCs) based on these SMAs exhibit a high Voc over 0.93 V, especially for PBDB-T:IDT-Py-IC-based PSCs, producing a rather high Voc up to 1.06 V due to the high-lying LUMO level. After optimizations, the PBDB-T:IDT-Th-IC-based PSC outperforms the other three SMAs with a high PCE up to 8.72% mainly due to the large Jsc and FF, which could be ascribed to better absorption characteristics, higher and more proportional carrier mobility, efficient exciton dissociation and charge collection, reduced bimolecular recombination and superior active layer morphology. This finding demonstrates that the π-bridge plays a crucial role in tailoring molecular structures, optoelectronic properties and device performance of A-π-D-π-A type SMAs.  相似文献   

14.
CH3NH3PbI3 films prepared by the 2-step method for perovskite solar cells generally have problems of residual unreacted PbI2 and rough surface structure. Here, we report a new 3-step method, based on the 2-step method with an additional spin-coating of CH3NH3(I,Br) solution on the CH3NH3PbI3 film to scavenge remnant PbI2. The 3-step method improved light absorption of the film by converting the residual PbI2 into CH3NH3PbI3−xBrx. Morphological improvements such as a network formation among perovskite grains and a decrease of intergranular voids were also observed. The additional CH3NH3I spin-coating resulted in the increases of both JSC and VOC, while that of CH3NH3Br solution showed a slight decrease of JSC and large increase of VOC due to the enlarged bandgaps. The maximum power conversion efficiency was improved from 12.9% (2-step) to 14.4% (3-step). Furthermore, the 3-step cells retained ~ 85% of the original PCE values after storing in air for 700 h, which indicates an improved stability.  相似文献   

15.
New donor–acceptor‐type copolymers comprised of benzobisthiazole (BBTz) as a weak donor rather than acceptor are proposed. This approach can simultaneously lead to deepening the HOMO and LUMO of the polymers with moderate energy offset against fullerene derivatives in bulk heterojunction organic photovoltaics. As a proof‐of‐concept, BBTz‐based random copolymers conjugated with typical electron acceptors: thienopyrroledione (TPD) and benzothiadiazole (BT) based on density functional theory calculations are synthesized. Laser‐flash and Xe‐flash time‐resolved microwave conductivity (TRMC) evaluations of polymer:[6,6]‐phenyl C61 butyric acid methyl ester (PCBM) blends are conducted to screen the feasibility of the copolymers, leading to optimization of processing conditions for photovoltaic device application. According to the TMRC results, alternating BBTz‐BT copolymers are designed, exhibiting extended photoabsorption up to ca. 750 nm, deep HOMO (–5.5 to –5.7 eV), good miscibility with PCBM, and inherent crystalline nature. Moreover, the maximized PCE of 3.8%, the top‐class among BBTz‐based polymers reported so far, is realized in an inverted cell using TiOx and MoOx as the buffer layers. This study opens up opportunities to create low‐bandgap polymers with deep HOMO, and shows how the device‐less TRMC evaluation is of help for decision‐making on judicious molecular design.  相似文献   

16.
Understanding the factors that limit the performance of perovskite solar cells (PSCs) can be enriched by detailed temperature (T)‐dependent studies. Based on p‐i‐n type PSCs with prototype methylammonium lead triiodide (MAPbI3) perovskite absorbers, T‐dependent photovoltaic properties are explored and negative T‐coefficients for the three device parameters (VOC, JSC, and FF) are observed within a wide low T‐range, leading to a maximum power conversion efficiency (PCE) of 21.4% with an impressive fill factor (FF) approaching 82% at 220 K. These T‐behaviors are explained by the enhanced interfacial charge transfer, reduced charge trapping with suppressed nonradiative recombination and narrowed optical bandgap at lower T. By comparing the T‐dependent device behaviors based on MAPbI3 devices containing a PASP passivation layer, enhanced PCE at room temperature is observed but different tendencies showing attenuating T‐dependencies of JSC and FF, which eventually leads to nearly T‐invariable PCEs. These results indicate that charge extraction with the utilized all‐organic charge transporting layers is not a limiting factor for low‐T device operation, meanwhile the trap passivation layer of choice can play a role in the T‐dependent photovoltaic properties and thus needs to be considered for PSCs operating in a temperature‐variable environment.  相似文献   

17.
A series of low band gap conjugated copolymers containing 9,10-modified phenanthrene and diketopyrrolopyrrole (DPP) units were synthesized as electron donor materials for bulk heterojunction organic solar cells. These donor-acceptor type PDPP copolymers have varying solubilizing groups on their identical conjugated backbones. The optical bandgap of PDPP copolymers is about 1.6 eV which corresponds to the long wavelength region of the solar spectrum. Through the incorporation of phenanthrene units into the conjugated backbone instead of commonly used thiophene derivatives, a higher open-circuit voltage of about 0.8 V could be achieved, as a result of their deeper HOMO level. Of all the devices, the P4:PC61BM BHJ system showed the best performance with a Voc of 0.79 V, a Jsc of 5.97 mA cm−2, a fill factor of 0.62 and a power conversion efficiency of 2.73% due to superior nanoscale phase separation between the electron donor and electron acceptor materials than in the other polymers arising from short-branched solubilizing groups on the phenanthrene side of its conjugated backbone.  相似文献   

18.
In this communication, we designed two low bandgap D-A copolymers with same fluorinated thiadiazoloquinoxaline (TDQ) as acceptor and different donor units benzo[2,1-b;3,4-b′]dithiophene (P1) and benzo[1,2-b:4,5-b′]dithiophene (P2). P1 and P2 exhibit broad absorption profiles covering from 350 nm to 1150 nm and 350–950 nm, respectively with optical bandgaps of 1.06 eV and 1.18 eV, respectively. Both copolymers showed deep highest occupied molecular orbitals (HOMO), i.e. −5.38 eV and −5.26 eV, for P1 and P2. Their photovoltaic properties were evaluated using conventional devices with a structure of ITO/PEDOT:PSS/copolymer:PC71BM/Al. After the optimizations of the copolymer to PC71BM weight ratios, and concentration of the solvent additive (DIO), the devices showed overall power conversion efficiencies of 4.03% and 5.42% for the P1 and P2 based devices, respectively. The higher value of PCE of the P2 based device is attributed to the higher values of Jsc and FF, that is related to the higher hole mobility and better exciton dissociation efficiency. Although the PCEs of these devices are moderate, these ultra low band gap copolymers can be used for their potential application in tandem polymers solar cells. Finally, methanol treatment of the active layer was adopted to increase the PCE of the P2:PC71BM based polymer solar cells that resulted in an improved PCE up to 6.93%.  相似文献   

19.
Interdigitated back contact silicon heterojunction (IBC‐SHJ) solar cells have the potential for high open circuit voltage (VOC) due to the surface passivation and heterojunction contacts, and high short circuit current density (JSC) due to all back contact design. Intrinsic amorphous silicon (a‐Si:H) buffer layer at the rear surface improve the surface passivation hence VOC and JSC, but degrade fill factor (FF) from an “S” shape JV curve. Two‐dimensional (2D) simulation using “Sentaurus device” demonstrates that the low FF is related to the valence band offset (energy barrier) at the hetero‐interface. Three approaches to the buffer layer are suggested to improve the FF: (1) reduced thickness, (2) increased conductivity, and/or (3) reduced band gap. Experimental IBC‐SHJ solar cells with reduced buffer thickness (<5 nm) and increased conductivity with low boron doping significantly improves FF, consistent with simulation. However, this has only marginal effect on efficiency since JSC and VOC also decrease due to poor surface passivation. A narrow band gap a‐Si:H buffer layer improves cell efficiency to 13.5% with unoptimized passivation quality. These results demonstrate that tailoring the hetero‐interface band structure is critical for achieving high FF. Simulations predicts that efficiences >23% are possible on planar devices with optimized pitch dimensions and achievable surface passivation, and 26% with light trapping. This work provides criterion to design IBC‐SHJ solar cell structures and optimize cell performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
We report a series-connected small molecule tandem photovoltaic cell utilizing two donors with complementary photovoltaic characteristics, lead phthalocyanine (PbPc) in the front subcell and boron subphthalocyanine chloride (SubPc) in the back subcell, to achieve both near infrared (NIR) response up to 1 μm and high open-circuit voltage (VOC) of more than 1.5 V in the same device. We find that the C60 layer thickness in the front subcell has a critical impact on the overall optical structure and photovoltaic performance of the tandem device. By combining transfer matrix calculations with subcell-selective spectral measurements, we are able to tune the optical field distribution inside the active layers and increase the photocurrent outputs from both subcells, leading to EQE > 30% over the wavelength range 400 nm < λ < 900 nm. This optimized tandem cell exhibits JSC = (5.5 ± 0.1) mA/cm2, fill factor = 0.54, VOC = 1.53 V, and a power conversion efficiency of (4.5 ± 0.2)%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号