首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mobile Ad Hoc network, nodes move freely, this can lead to frequent changes of network topology. Routing protocol algorithm is the strategy to establish communication links for network nodes, and its performance influences the availability of Ad Hoc network directly. By using wireless channel to transmit data in Ad Hoc network, the invaded malicious nodes will cause various attacks, aim to steal the transmission data or destroy the network. Based on the traditional proactive routing protocol for Ad Hoc network, an improved safe routing strategy SDSDV is put forward to resist attacks against routing protocols. The safe proactive routing protocol includes route request and route response two stages. When the network initialization is complete, after successful identity authentication by each other, secure communication paths are established between nodes and the encrypted data will be transmission through the path. The protocol integrates distributed authentication, encryption algorithm, hash check, and other security policy together. SDSDV protocol reduces the risk of malicious manipulation of routing information and ensures the safe and reliable routing between the source and destination nodes.  相似文献   

2.
A mobile ad hoc network (MANET) is a self-configurable network connected by wireless links. This type of network is only suitable for provisional communication links as it is infrastructure-less and there is no centralized control. Providing QoS and security aware routing is a challenging task in this type of network due to dynamic topology and limited resources. The main purpose of secure and trust based on-demand multipath routing is to find trust based secure route from source to destination which will satisfy two or more end to end QoS constraints. In this paper, the standard ad hoc on-demand multi-path distance vector protocol is extended as the base routing protocol to evaluate this model. The proposed mesh based multipath routing scheme to discover all possible secure paths using secure adjacent position trust verification protocol and better link optimal path find by the Dolphin Echolocation Algorithm for efficient communication in MANET. The performance analysis and numerical results show that our proposed routing protocol produces better packet delivery ratio, reduced packet delay, reduced overheads and provide security against vulnerabilities and attacks.  相似文献   

3.
Lee  S.-J. Gerla  M. Toh  C.-K. 《IEEE network》1999,13(4):48-54
Bandwidth and power constraints are the main concerns in current wireless networks because multihop ad hoc mobile wireless networks rely on each node in the network to act as a router and packet forwarder. This dependency places bandwidth, power, and computation demands on mobile hosts which must be taken into account when choosing the best routing protocol. In previous years, protocols that build routes based on demand have been proposed. The major goal of on-demand routing protocols is to minimize control traffic overhead. We perform a simulation and performance study on some routing protocols for ad hoc networks. The distributed Bellman-Ford (1957, 1962), a traditional table-driven routing algorithm, is simulated to evaluate its performance in multihop wireless network. In addition, two on-demand routing protocols (dynamic source routing and associativity-based routing) with distinctive route selection algorithms are simulated in a common environment to quantitatively measure and contrast their performance. The final selection of an appropriate protocol will depend on a variety of factors, which are discussed in this article  相似文献   

4.
Among the many multipath routing protocols, the AOMDV is widely used in highly dynamic ad hoc networks because of its generic feature. Since the communicating nodes in AOMDV are prone to link failures and route breaks due to the selection of multiple routes between any source and destination pair based on minimal hop count which does not ensure end-to-end reliable data transmission. To overcome such problems, we propose a novel node disjoint multipath routing protocol called End-to-End Link Reliable Energy Efficient Multipath Routing (E2E-LREEMR) protocol by extending AOMDV. The E2E-LREEMR finds multiple link reliable energy efficient paths between any source and destination pair for data transmission using two metrics such as Path-Link Quality Estimator and Path-Node Energy Estimator. We evaluate the performance of E2E-LREEMR protocol using NS 2.34 with varying network flows under random way-point mobility model and compare it with AOMDV routing protocol in terms of Quality of Service metrics. When there is a hike in network flows, the E2E-LREEMR reduces 30.43 % of average end-to-end delay, 29.44 % of routing overhead, 32.65 % of packet loss ratio, 18.79 % of normalized routing overhead and 12.87 % of energy consumption. It also increases rather 10.26 % of packet delivery ratio and 6.96 % of throughput than AOMDV routing protocol.  相似文献   

5.
移动代理技术在Ad Hoc无线网络中的应用研究   总被引:1,自引:0,他引:1  
Ad Hoc无线网络是一组具有路由和转发功能的移动节点组成的一个多跳的临时性自治系统,是一种无中心的无线网络。现有的主动路由协议或者按需路由协议都不能很好地满足Ad Hoc网络的需要。介绍了Ad Hoc无线移动网络和移动代理技术。在分析了现有的2种路由协议后,提出了在按需路由协议中加入移动代理技术来增强Ad Hoc无线网络的性能。在这些结果的基础上,提出了移动代理通信协议。  相似文献   

6.
Performance comparison of trust-based reactive routing protocols   总被引:4,自引:0,他引:4  
Ad hoc networks, due to their improvised nature, are frequently established in insecure environments and hence become susceptible to attacks. These attacks are launched by participating malicious nodes against different network services. Routing protocols, which act as the binding force in these networks, are a common target of these nodes. A number of secure routing protocols have recently been proposed, which make use of cryptographic algorithms to secure the routes. However, in doing so, these protocols entail a number of prerequisites during both the network establishment and operation phases. In contrast, trust-based routing protocols locate trusted rather than secure routes in the network by observing the sincerity in participation by other nodes. These protocols thus permit rapid deployment along with a dynamically adaptive operation, which conforms with the current network situation. In this paper, we evaluate the performance of three trust-based reactive routing protocols in a network with varying number of malicious nodes. With the help of exhaustive simulations, we demonstrate that the performance of the three protocols varies significantly even under similar attack, traffic, and mobility conditions. However, each trust-based routing protocol has its own peculiar advantage making it suitable for application in a particular extemporized environment.  相似文献   

7.
Wireless links are often asymmetric due to heterogeneity in the transmission power of devices, non-uniform environmental noise, and other signal propagation phenomena. Unfortunately, routing protocols for mobile ad hoc networks typically work well only in bidirectional networks. This paper first presents a simulation study quantifying the impact of asymmetric links on network connectivity and routing performance. It then presents a framework called BRA that provides a bidirectional abstraction of the asymmetric network to routing protocols. BRA works by maintaining multi-hop reverse routes for unidirectional links and provides three new abilities: improved connectivity by taking advantage of the unidirectional links, reverse route forwarding of control packets to enable off-the-shelf routing protocols, and detection packet loss on unidirectional links. Extensive simulations of AODV layered on BRA show that packet delivery increases substantially (two-fold in some instances) in asymmetric networks compared to regular AODV, which only routes on bidirectional links.  相似文献   

8.
SMORT: Scalable multipath on-demand routing for mobile ad hoc networks   总被引:3,自引:0,他引:3  
L.  S.V.   《Ad hoc Networks》2007,5(2):162-188
Increasing popularity and availability of portable wireless devices, which constitute mobile ad hoc networks, calls for scalable ad hoc routing protocols. On-demand routing protocols adapt well with dynamic topologies of ad hoc networks, because of their lower control overhead and quick response to route breaks. But, as the size of the network increases, these protocols cease to perform due to large routing overhead generated while repairing route breaks. We propose a multipath on-demand routing protocol (SMORT), which reduces the routing overhead incurred in recovering from route breaks, by using secondary paths. SMORT computes fail-safe multiple paths, which provide all the intermediate nodes on the primary path with multiple routes (if exists) to destination. Exhaustive simulations using GloMoSim with large networks (2000 nodes) confirm that SMORT is scalable, and performs better even at higher mobility and traffic loads, when compared to the disjoint multipath routing protocol (DMRP) and ad hoc on-demand distance vector (AODV) routing protocol.  相似文献   

9.
The ‘load distribution’ proposition in mobile ad-hoc networks (MANETs) is accomplishing great stimulation. This is because of the phenomenal facets it possesses including advanced network resilience, reliability and performance. Though there are other leading network layer routing protocols, but they radically utilise single-path communication paradigm, which is why they fail in achieving efficient load distribution in a network. Via this paper, we propose an efficient cross-layer adaptive load distribution approach to capitalise network’s channel utilisation and to rapidly adapt to dynamic wireless channel characteristic changes. The proposed method modifies the load balanced congestion adaptive routing (LBCAR) protocol and is developed using dynamic load distribution technique, by pioneering (i) novel parameters, which report for the availability of route pertaining to minimum traffic load and better link lifetime and also adapt according to varying available network resources; (ii) an absolute dynamic method to lessen the redundant route oscillations which further reduces the routing instabilities. The simulation results demonstrate the usefulness of the proposed method and yields better results in comparison to LBCAR and standard instead of dynamic ource outing, it is dynamic source routing (DSR) protocol.  相似文献   

10.
Designing an energy efficient routing protocol is one of the main issue of Mobile Ad-hoc Networks (MANETs). It is challenging task to provide energy efficient routes because MANET is dynamic and mobile nodes are fitted with limited capacity of batteries. The high mobility of nodes results in quick changes in the routes, thus requiring some mechanism for determining efficient routes. In this paper, an Intelligent Energy-aware Efficient Routing protocol for MANET (IE2R) is proposed. In IE2R, Multi Criteria Decision Making (MCDM) technique is used based on entropy and Preference Ranking Organization METHod for Enrichment of Evaluations-II (PROMETHEE-II) method to determine efficient route. MCDM technique combines with an intelligent method, namely, Intuitionistic Fuzzy Soft Set (IFSS) which reduces uncertainty related to the mobile node and offers energy efficient route. The proposed protocol is simulated using the NS-2 simulator. The performance of the proposed protocol is compared with the existing routing protocols, and the results obtained outperforms existing protocols in terms of several network metrics.  相似文献   

11.
In ad hoc wireless networks, the high mobility of hosts is usually a major reason for link failures. The general ‘shortest path’ based routing protocols may not lead to stable routes. In this paper, we propose a mobility assessment on‐demand (MAOD) routing protocol to select a stable route in order to enhance system throughput and performance. An error count parameter is used to judge whether a host is highly mobile. The proposed MAOD routing protocol is an on‐demand routing protocol similar to dynamic source routing (DSR). The difference between MAOD and DSR is in the path selection method. Because MAOD takes the mobility of hosts into consideration, it will select a more stable and reliable path than DSR. In comparison, DSR only considers whether this route is a shortest path or not. Finally, the system performance is analyzed by using the global mobile simulation (GloMoSim) simulator. We can observe that MAOD routing protocol outperforms DSR routing protocol especially in the high mobility environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
该文针对水下物联网(IoUT)数据传输问题设计了一种混合地理路由协议。海洋环境的复杂性严重地限制了IoUT水下物联网节点间的数据传输性能,因此需要一个高效的路由协议以对抗复杂的信道环境。无状态几何路由(G-STAR)是一种采用贪婪转发模式的地理路由协议,在大多数3维物联网情景中能够找到合适的数据传输路径,然而水下环境中存在诸多不利因素制约了G-STAR的性能。对此,该文提出一个混合G-STAR(Hybrid G-STAR, H-G-STAR)协议,在保有G-STAR优势的基础上对协议在水下环境中的适应性进行了针对性设计。通过增加基于信道监听的无协作转发策略,在节点数量足够时自发地选择信道状况最佳的路径进行路由,由此避开贪婪转发在水下环境中可能遭遇的极端劣化信道。仿真结果显示H-G-STAR协议相较于基准G-STAR协议有着更好的路由性能,并且在物理层能够取得更低的误比特率(BER),在水下节点的网络拓扑中更为适用。  相似文献   

13.
路由优化是移动通信领域的一个重要研究课题,标准移动IP协议的不对称的三角路由给通信造成时延过长、网络资源浪费问题。讨论了一种由家乡代理发出绑定更新消息信令的路由优化方案,并通过NS仿真比较了路由优化前后数据包传输路径。仿真结果表明,路由优化方案消除了三角路由的影响,很大程度上提高了网络的传输效率。  相似文献   

14.
Mobile ad hoc networks (MANETs) are characterized by multiple entities, a frequently changing network topology and the need for efficient dynamic routing protocols. In MANETs, nodes are usually powered by batteries. Power control is tightly coupled with both the physical and medium access layers (MACs). However, if we increase the transmission power, at the same time we increase the interference to other nodes which diminish the transport capacity of wireless systems. Thus, the routing protocols based on hop count metric suffer from performance degradation when they operate over MANET. Routing in ad hoc wireless networks is not only a problem of finding a route with shortest length, but it is also a problem of finding a stable and good quality communication route in order to avoid any unnecessary packet loss. Cross-layer design of ad hoc wireless networks has been receiving increasing attention recently. Part of these researches suggests that routing should take into account physical layer characteristics. The goal of this paper is to improve the routing reliability in MANET and to reduce power consumption through cross-layer approach among physical, MAC and network layers. The proposed cross-layer approach is based on signal to interference plus noise ratio (SINR) and received signal strength indication (RSSI) coming from the physical layer. This solution performs in one hand the ad hoc on-demand distance vector routing protocol by choosing reliable routes with less interferences using SINR metric and in another hand; it permits to reduce the power transmission when sending the data packets by using RSSI metric.  相似文献   

15.
Numerous routing protocols have recently been developed for ad hoc mobile networks. Routing protocols to date can be categorized as either ‘table-driven’ or ‘on-demand’. Many of the proposed routing protocols take the on-demand approach because this does not require keeping lots of routing information. However, these kinds of protocols are not able to react fast enough to maintain routing. In this paper, we propose a new protocol to improve existing on-demand routing protocols by constructing multiple backup routes; when the network topology changed, the proposed protocol could transmit data packets dynamically through backup routes. We then developed an analytic model to estimate the reconnection probability of the proposed algorithm. We also examined the performance by simulating the protocol using ns2. The experimental results showed that the protocol had fewer control packages, lower routing packet overhead, and a higher receiving ratio than others.  相似文献   

16.
Multi-hop vehicle-to-vehicle communication is useful for supporting many vehicular applications that provide drivers with safety and convenience. Developing multi-hop communication in vehicular ad hoc networks (VANET) is a challenging problem due to the rapidly changing topology and frequent network disconnections, which cause failure or inefficiency in traditional ad hoc routing protocols. We propose an adaptive connectivity aware routing (ACAR) protocol that addresses these problems by adaptively selecting an optimal route with the best network transmission quality based on statistical and real-time density data that are gathered through an on-the-fly density collection process. The protocol consists of two parts: 1) select an optimal route, consisting of road segments, with the best estimated transmission quality, and 2) in each road segment of the chosen route, select the most efficient multi-hop path that will improve the delivery ratio and throughput. The optimal route is selected using our transmission quality model that takes into account vehicle densities and traffic light periods to estimate the probability of network connectivity and data delivery ratio for transmitting packets. Our simulation results show that the proposed ACAR protocol outperforms existing VANET routing protocols in terms of data delivery ratio, throughput and data packet delay. Since the proposed model is not constrained by network densities, the ACAR protocol is suitable for both daytime and nighttime city VANET scenarios.  相似文献   

17.
A mobile ad hoc network consists of mobile nodes that communicate in an open wireless medium. Adversaries can launch analysis against the routing information embedded in the routing message and data packets to detect the traffic pattern of the communications, thereby obtaining sensitive information of the system, such as the identity of a critical node. In order to thwart such attacks, anonymous routing protocols are developed. For the purposes of security and robustness, an ideal anonymous routing protocol should hide the identities of the nodes in the route, in particular, those of the source and the destination. Multiple routes should be established to increase the difficulty of traffic analysis and to avoid broken paths due to node mobility. Existing schemes either make the unrealistic and undesired assumption that certain topological information about the network is known to the nodes, or cannot achieve all the properties described in the above. In this paper, we propose an anonymous routing protocol with multiple routes called ARMR, which can satisfy all the required properties. In addition, the protocol has the flexibility of creating fake routes to confuse the adversaries, thus increasing the level of anonymity. In terms of communication efficiency, extensive simulation is carried out. Compared with AODV and MASK, our ARMR protocol gives a higher route request success rate under all situations and the delay of our protocol is comparable to the best of these two protocols.  相似文献   

18.
移动Ad hoc网络中基于链路稳定性预测的按需路由协议   总被引:4,自引:0,他引:4  
移动Ad hoc网络拓扑的高度动态变化是造成传统按需路由协议的路由频繁通断的主要原因,因此在传统按需路由协议的基础上进行链路稳定性预测扩展,增强路由稳定性具有十分重要的意义。该文利用分组的接收功率把节点间的相对运动划分为靠近和远离两种类型,然后在不同相对运动类型下根据节点间距离得到了的链路平均维持时间。在路由过程中,中间节点利用得到的链路平均维持时间设置请求报文的转发延迟,通过一定转发规则选择稳定性较强的链路构成路径。仿真结果表明进行链路稳定性预测扩展后的按需路由协议能够有效增强路由的稳定性,并提高网络性能。  相似文献   

19.

The new information and communication technologies have changed the trend of communication in all fields. The transportation sector is one of the emerging field, where vehicles are communicating with each other or with infrastructure for different safety and comfort applications in the network. Vehicular ad hoc networks is one of the emerging multi-hop communication type of intelligent transportation field to deal with high mobility and dynamic vehicular traffic to deliver data packets in the network. The high mobility and dynamic topologies make the communication links unreliable and leads to frequent disconnectivity, delay and packet dropping issues in the network. To address these issues, we proposed a road aware geographical routing protocol for urban vehicular ad hoc networks. The proposed routing protocol uses distance, direction and traffic density routing metrics to forward the data towards the destination. The simulation results explore the better performance of proposed protocol in terms of data delivery, network delay and compared it with existing geographical routing protocols.

  相似文献   

20.
Gautam  Sandeep   《Ad hoc Networks》2006,4(2):186-203
To ensure uninterrupted communication in a mobile ad hoc network, efficient route discovery is crucial when nodes move and/or fail. Hence, protocols such as Dynamic Source Routing (DSR) precompute alternate routes before a node moves and/or fails. In this paper, we modify the way these alternate routes are maintained and used in DSR, and show that these modifications permit more efficient route discovery when nodes move and/or fail. Our routing protocol also does load balancing among the number of alternate routes that are available. Our simulation results show that maintenance of these alternate routes (without affecting the route cache size at each router) increases the packet delivery ratio. We also show that our approach enables us to provide QoS guarantees by ensuring that appropriate bandwidth will be available for a flow even when nodes move. Towards this end, we show how reservations can be made on the alternate routes while maximizing the bandwidth usage in situations where nodes do not move. We also show how the load of the traffic generated due to node movement is shared among several alternate routes. In addition, we adaptively use Forward Error Correction techniques with our protocol and show how it can improve the packet delivery ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号