首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 777 毫秒

1.  基于分块CNN的多尺度SAR图像目标分类算法  
   曲长文  刘晨  周强  李智  李健伟《雷达科学与技术》,2018年第16卷第2期
   针对合成孔径雷达(Synthetic Aperture Radar, SAR)图像目标分辨率差异大,多尺度SAR图像目标分类准确率不高的问题,提出了一种基于迁移学习和分块卷积神经网络(Convolutional Neural Network, CNN)的SAR图像目标分类算法。首先通过大量与目标域相近的源域数据对分块CNN的参数进行训练,得到不同尺度下的CNN特征提取网络;其次将CNN的卷积和池化层迁移到新的网络结构中,实现目标特征的提取;最后用超限学习机(Extreme Learning Machine, ELM)网络对提取的特征进行分类。实验数据采用美国MSTAR数据库以及多尺度SAR图像舰船目标数据集,实验结果表明,该方法对多尺度SAR图像的分类效果优于传统CNN。    

2.  基于跨连卷积神经网络的性别分类模型  被引次数:1
   张婷  李玉鑑  胡海鹤  张亚红《自动化学报》,2016年第42卷第6期
   为提高性别分类准确率, 在传统卷积神经网络(Convolutional neural network, CNN)的基础上, 提出一个跨连卷积神经网络(Cross-connected CNN, CCNN)模型. 该模型是一个9层的网络结构, 包含输入层、6个由卷积层和池化层交错构成的隐含层、全连接层和输出层, 其中允许第2个池化层跨过两个层直接与全连接层相连接. 在10个人脸数据集上的性别分类实验结果表明, 跨连卷积网络的准确率均不低于传统卷积网络.    

3.  全卷积神经网络仿真与迁移学习  
   《软件》,2019年第5期
   人们捕获视图,从视图中提取特征并理解含义。同理,驾驶员也通过视觉实现对街景的判断。我们期待,有一天机器能够通过自主计算完成同样的工作。得益于计算机的强大处理能力,基于CNNs(Convolutional Neural Networks,卷积神经网络)的深度学习算法能够很好地完成目标识别等计算机视觉任务。但在实际工业应用中,资源往往受限,较大的网络不利于嵌入式移植。通常一个完备的CNN网络包含卷积层、池化层和全连接层[1],本文参考文章[2]中的方法,舍去池化层和全连接层,使用卷积层代替,并对几种网络进行了仿真实验及结果分析,寻找在受限平台使用CNN网络的方法。    

4.  基于小波分解卷积神经网络的病理图像分类  
   丁偕  崔浩阳  张敬谊《计算机系统应用》,2021年第30卷第9期
   组织病理图像分析是癌症诊断的"金标准",在患者的预后治疗中起到至关重要的作用.目前在AI医学影像领域,利用CNN(Convolutional Neural Network)网络对数字病理图像的分类已经成为研究热点.但是传统CNN网络中广泛使用最大/平均池化(Max/Average pooling)模块,不可避免的丢失了大量病理图像中的特征信息,造成分类准确率低且模型不易收敛.因此,本文提出一种基于小波分解卷积神经网络的病理图像分类方法(Wavelet Decomposition Convolutional Neural Networks,WDCNN),该方法能够使传统CNN模型学习到频域信息,它将小波变换的多尺度分析引入到CNN模型中,利用小波分解代替传统的池化层,相比于最大值和平均值池化减少了特征的丢失.鉴于空域与频域具有不同的特性,将小波分解后的高频分量通过捷径连接的方式添加到下一层,弥补了在池化过程中丢失的细节特征信息.本文在Camelyon16数据集上评估了不同的池化方法和不同小波基函数在病理图像分类方面的性能.根据实验结果表明,引入小波分解的CNN模型能够提升网络的分类准确率.    

5.