首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 734 毫秒
1.
针对多小区OFDMA系统下行链路,研究了用户公平性约束下的资源分配问题,提出了一种多基站协作的迭代优化的分布式资源分配算法。每个小区根据干扰状况及用户公平性,迭代地进行子载波和功率的资源优化;而每次迭代中,根据用户公平性准则分配子载波,并将非凸的小区功率优化问题转化为其下界的凸问题,通过一个分布式算法来求解。通过仿真验证了算法的有效性;仿真结果表明,与传统网络的固定功率分配的情形相比,所提算法保证了用户之间的公平性并显著提高了系统吞吐量。  相似文献   

2.
针对5G时代小基站的密集部署带来的复杂干扰问题,对下行的认知无线电超密集网络下的资源分配进行了研究。为减小网络干扰,提高次用户吞吐量,提出了一种改进的基于用户分簇的资源分配算法。基于基站的覆盖范围,选出用户的强干扰基站,以用户-基站干扰关系建立用户-用户干扰图,按用户受到的平均弱干扰划分优先级对用户分簇,再为簇集群预分配频段,为每个簇分配对应频段中效用最大的信道。该资源分配算法能准确反映用户间的干扰关系,保障资源分配公平性。仿真结果表明,当用户密度与基站密度均较大时,与相同场景的已有算法相比,该改进算法有较好的抗干扰能力,能有效提高次用户的吞吐量。  相似文献   

3.
Multiuser orthogonal frequency division multiplexing (MU-OFDM) is a promising technique for achieving high downlink capacities in future cellular and wireless local area network (LAN) systems. The sum capacity of MU-OFDM is maximized when each subchannel is assigned to the user with the best channel-to-noise ratio for that subchannel, with power subsequently distributed by water-filling. However, fairness among the users cannot generally be achieved with such a scheme. In this paper, a set of proportional fairness constraints is imposed to assure that each user can achieve a required data rate, as in a system with quality of service guarantees. Since the optimal solution to the constrained fairness problem is extremely computationally complex to obtain, a low-complexity suboptimal algorithm that separates subchannel allocation and power allocation is proposed. In the proposed algorithm, subchannel allocation is first performed by assuming an equal power distribution. An optimal power allocation algorithm then maximizes the sum capacity while maintaining proportional fairness. The proposed algorithm is shown to achieve about 95% of the optimal capacity in a two-user system, while reducing the complexity from exponential to linear in the number of subchannels. It is also shown that with the proposed resource allocation algorithm, the sum capacity is distributed more fairly and flexibly among users than the sum capacity maximization method.  相似文献   

4.
In this paper, to optimize the average delay and power allocation (PA) for system users, we propose a resource scheduling scheme for wireless networks based on Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) according to the first fifth-generation standards. For delay minimization, we solve a throughput maximization problem that considers CP-OFDM systems with carrier aggregation (CA). Regarding PA, we consider an approach that involves maximizing goodput using an effective signal-to-noise ratio. An algorithm for jointly solving delay minimization through computation of required user rates and optimizing the power allocated to users is proposed to compose the resource allocation approach. In wireless network simulations, we consider a scenario with the following capabilities: CA, 256-Quadrature Amplitude Modulation, millimeter waves above 6 GHz, and a radio frame structure with 120 KHz spacing between the subcarriers. The performance of the proposed resource allocation algorithm is evaluated and compared with those of other algorithms from the literature using computational simulations in terms of various Quality of Service parameters, such as the throughput, delay, fairness index, and loss rate.  相似文献   

5.
This paper investigates the problem of multiuser packet scheduling and resource allocation for video transmission over downlink OFDMA networks. A cross-layer approach is proposed to maximize the received video quality under the video quality fairness constraint. Unlike the previous methods in which the objective index is estimated the video quality in the unit of bit, the proposed algorithm develops the objective index in unit of packet, which is more fit for video transmission. In order to solve the optimization problem, a suboptimal algorithm of joint packet scheduling and resource allocation is proposed. The algorithm is compatible with the emerging wireless standards, such as IEEE 802.16. The simulation results show that the proposed method outperforms the conventional resource allocation schemes in terms of received video qualities and quality fairness.  相似文献   

6.
This paper investigates the energy-efficient radio resource allocation problem of the uplink smallcell networks. Different from the existing literatures which focus on improving the energy efficiency (EE) or providing fairness measured by data rates, this paper aims to provide fairness guarantee in terms of EE and achieve EE-based proportional fairness among all users in smallcell networks. Specifically, EE-based global proportional fairness utility optimization problem is formulated, taking into account each user’s quality of service, and the cross-tier interference limitation to ensure the macrocell transmission. Instead of dealing with the problem in forms of sum of logarithms directly, the problem is transformed into a form of sum of ratios firstly. Then, a two-step scheme which solves the subchannel and power allocation separately is adopted, and the corresponding subchannel allocation algorithm and power allocation algorithm are devised, respectively. The subchannel allocation algorithm is heuristic, but can achieve close-to-optimal performance with much lower complexity. The power allocation scheme is optimal, and is derived based on a novel method which can solve the sum of ratios problems efficiently. Numerical results verify the effectiveness of the proposed algorithms, especially the capability of EE fairness provisioning. Specifically, it is suggested that the proposed algorithms can improve the fairness level among smallcell users by 150–400 % compared to the existing algorithms.  相似文献   

7.
随着物联网(IoT)时代的到来,无线网络饱和的问题已经越来越严重。为了克服终端密集接入问题,IEEE标准协会(IEEE-SA)制定了无线局域网的最新标准—IEEE 802.11ax。该标准使用正交频分多址(OFDMA)技术对无线信道资源进行了更细致的划分,划分出的子信道被称为资源单元(RU)。为解决密集用户环境下802.11ax 上行链路的信道资源调度问题,该文提出一种基于强化学习的RU调度算法。该算法使用演员-评论家(Actor-Critic)算法训练指针网络,解决了自适应RU调度问题,最终合理分配RU资源给各用户,兼具优先级和公平性的保障。仿真结果表明,该调度算法在IEEE 802.11ax上行链路中比传统的调度方式更有效,具有较强的泛化能力,适合应用在密集用户环境下的物联网场景中。  相似文献   

8.
钮金鑫 《电讯技术》2024,64(1):98-105
针对现有射频能量收集网络资源分配研究局限于单个数据源场景,无法适配于多数据源网络的问题,提出了一种适用于多数据源场景的射频能量收集中继网络传输协议框架,在该框架内节点可作为源节点或中继节点传输自身数据或转发数据,并在其他节点的数据传输过程中完成射频能量收集。以协议框架为基础,分别以系统吞吐量及用户公平性为优化目标设计两种资源分配方案。仿真表明,两种方案可有效改善网络吞吐量及资源分配公平性。  相似文献   

9.
Resource allocation problem in multiuser multiple input single output-orthogonal frequency division multiple access (MISO-OFDMA) systems with downlink beamforming for frequency selective fading channels is studied. The article aims at maximizing system throughput with the constraints of total power and bit error rate (BER) while supporting fairness among users. The downlink proportional fairness (PF) scheduling problem is reformulated as a maximization of the sum of logarithmic user data rate. From necessary conditions on optimality obtained analytically by Karush-Kuhn-Tucker (KKT) condition, an efficient user selection and resource allocation algorithm is proposed. The computer simulations reveal that the proposed algorithm achieves tradeoff between system throughput and fairness among users.  相似文献   

10.
Poor indoor coverage and high cost of cellular network operators are among the main motivations for the employment of femtocell networks. Since femto access points (FAPs) and macrocells share same spectrum resources, radio resource allocation is an important challenge in OFDMA femtocell networks. Mitigating interference and improving fairness among FAPs are the main objectives in previous resource allocation methods. However, the main drawback is that user level fairness has not been adequately addressed in the previous methods, and moreover, most of them suffer from inefficient utilization of radio resources. In this paper, modeling the problem as a graph multi-coloring, a centralized algorithm is proposed to obtain both user level fairness and spectrum efficiency. This method employs a priority-based greedy coloring algorithm in order to increase the reuse factor and consequently the spectrum efficiency. Moreover, in situations where the number of available OFDM resources is not sufficient, the proposed method employs a novel fairness index to fairly share those remaining resources among users of FAPs. The performance comparison between the proposed and previous methods shows that the proposed method improves the balance between user-level fairness and resource utilization. In addition, the presented analyses show that the time complexity of the proposed method is less than that of conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号