首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
采用固相法制备了LiFe0.8Mn0.2-xLaxPO4/C(x=0,0.025,0.050)复合材料.通过XRD、SEM和恒流充放电测试对材料的晶体结构、形貌和电化学性能进行研究.结果表明少量的La掺入并未影响到LiFe0.8Mn0.2PO4/C的晶体结构,但显著改善了材料的电化学性能.LiFe0.8Mn0.175La0.025PO4/C在0.1C,0.5C,1C,2C和5C倍率下的首次放电比容量分别为154.7,145.0,135.3,125.4和118.1mAh/g,此外,材料还表现出较好的循环性能,LiFe0.8Mn0.175La0.025PO4/C在1C倍率下循环30次后,容量保持率为99.5%.  相似文献   

2.
采用湿法球磨制备了锂离子电池用混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4。通过X射线衍射(XRD)和扫描电镜(SEM)表征了材料的结构和形貌,采用恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)方法研究了混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的电化学性能。结果表明:混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4的晶体结构完好,碳包覆的纳米LiFePO4颗粒较好地包覆在LiNi0.5Co0.2Mn0.3O2表面。含质量分数15% LiFePO4的混合正极材料LiNi0.5Co0.2Mn0.3O2/LiFePO4电化学性能优良,0.2C首次充放电比容量为181.40 mAh?g–1,首次充放电效率为90.79%;1.0C循环50次后放电比容量为169.89 mAh?g–1,容量保持率为97.80%;3.0C循环5次后的放电比容量为162.22 mAh?g–1,容量保持率仍有89.43%;60 ℃高温存储7 d后,容量保持率和容量恢复率分别为86.48%和97.32%。  相似文献   

3.
以Fe2O3、LiH2PO4为原料,蔗糖为碳源,草酸为添加剂,采用流变相辅助碳热还原法制备了LiFePO4/C复合材料。研究了草酸添加量、烧结温度以及碳含量对所制LiFePO4/C复合材料电化学性能的影响。结果表明:通过适量草酸可有效提高LiFePO4/C的电化学性能,并且当草酸添加量为LiH2PO4摩尔量的1.5倍、烧结温度为700℃、碳质量分数在8.8%左右时,所制材料表现出最佳电化学性能:其0.2C倍率下放电比容量可达154 mAh/g;5.0C高倍率下具有约120 mAh/g的可逆放电比容量;1.0C倍率下循环充放电1 000周容量保持率达98%。  相似文献   

4.
以硝酸盐为原料,用sol-gel法合成锂离子电池正极材料LiNi1-xCoxO2,采用XRD、SEM和电化学测试等方法对材料的物理化学性质以及电化学性能进行表征。结果表明,经过Co掺杂后,材料具有较高的初始放电比容量和较好循环性能。在750℃下合成的LiNi0.8Co0.2O2,在3.0~4.2 V 0.2 C下经恒电流充放电测试,其首次放电容量为170.40mAh.g–1,经过30次充放电循环后放电容量为149.86 mAh.g–1,可逆容量的保持率为89.95%。  相似文献   

5.
以酚醛树脂为碳源,通过高温热解法成功制备了硅碳复合材料(Si/C)。采用热重分析、X射线衍射和扫描电镜方法表征材料的组成、结构和形貌,采用恒流充放电测试、循环伏安法和交流阻抗谱探究了原料配比对硅碳复合材料电化学性能的影响。结果表明,纳米硅与酚醛树脂质量比为1∶1时,纳米硅表面被热解碳均匀包覆,有效提高了复合材料的电化学储能性能。这是因为碳包覆层有助于提高材料的导电率,并缓解硅在放电过程中的体积膨胀。测试发现材料在0.1C倍率下首次充放电比容量为1546 mAh/g;循环50次后可逆比容量为1443 mAh/g,容量保持率达93%;在1C倍率下仍具有1224 mAh/g的可逆比容量。  相似文献   

6.
采用高温固相法合成了锂离子电池正极材料LiMn2O4微粉,并采用热裂解法在其表面进行了碳包覆。通过XRD、SEM、TGA分析和充放电测试研究了包覆后粉体的晶体结构、形貌、包覆量和电化学性能。测试结果表明:合成的碳包覆LiMn2O4材料为单一的尖晶石型结构,碳包覆有效降低了Jahn-Teller畸变和锰在电解液中的溶解,提高了材料的电化学性能。以0.1C倍率充放电时碳包覆LiMn2O4的初始充放电比容量为123.1 mAh/g,循环20次后容量保持率为96%。  相似文献   

7.
采用辐照凝胶法制备了锂离子电池正极用LiNi1/3Co1/3Mn1/3O2粉体材料。采用XRD、SEM和电化学充放电测试对制备材料的结构和性能进行了表征。结果表明:900℃制得的样品具有较好的层状结构,结晶性适中,电化学性能优异:其首次放电容量高达184mA·h/g(2.80~4.50V,C/10),30次循环后的容量保持率为87.4%,表现出较好的充放电容量和循环性能,较之850,950℃煅烧样品具有最小的交流阻抗和直流阻抗。  相似文献   

8.
LiNi_(0.5)Mn_(1.5)O_4/Li_4Ti_5O_(12)电池体系的性能研究   总被引:1,自引:0,他引:1  
采用高温固相法合成了锂离子电池用正极材料LiNi0.5Mn1.5O4和负极材料Li4Ti5O12。通过XRD和SEM分析,并借恒电流充放电和循环伏安法测试了LiNi0.5Mn1.5O4/Li4Ti5O12电池体系的电化学性能。结果表明:LiNi0.5Mn1.5O4和Li4Ti5O12均为尖晶石结构,LiNi0.5Mn1.5O4/Li4Ti5O12电池具有良好的充放电循环可逆性,以0.5C倍率充放电,首次放电比容量可达124.31mAh·g–1,充放电循环50次后,放电比容量在116mAh·g–1以上,容量保持率为93.32%。  相似文献   

9.
Ce4+掺杂对LiFePO4/C正极极材料微观结构和性能的影响   总被引:1,自引:1,他引:0  
采用碳热还原法合成了LiFe1-2xCexPO4/C(0≤x≤0.03)锂离子电池正极材料。利用X射线衍射、扫描电镜、恒流充放电、循环伏安法等手段对Ce4+掺杂前后磷酸铁锂正极材料的结构和电化学性能进行了表征。结果表明,随着Ce4+掺入量的增加,LiiFe1-2xCerPO4/C材料的电化学性能,特别是较高倍率(5~1...  相似文献   

10.
采用机械球磨法合成LiFePO_4/膨胀石墨复合材料,讨论了膨胀石墨不同添加量对复合材料电化学性能的影响。运用扫描电镜、四探针测试和恒流充放电等对材料的表面形貌、电阻率和电化学性能进行了研究。结果表明:当膨胀石墨的添加量为质量分数1.0%时,其电化学性能最优异,0.2C放电比容量可达到164.2mAh/g,1.0C循环60次后,其放电比容量仍有151.6mAh/g,3.0C充放电后,其容量保持率仍有89.6%。  相似文献   

11.
采用碳酸盐共沉淀法合成了Ni0.4Co0.2Mn0.4CO3前驱体,然后以Ni0.4Co0.2MnCO3和LiOH为原料,合成出了层状锂离子电池正极材料LiNi0.4Co0.2Mn0.4O2.通过XRD,SEM和电化学测试对LiN0.4Co0.2Mn0.4O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃下烧结12 h所得到的样品,以0.2 c放电,其首次放电容量151 mAh·g-1,循环30次后容量为138 mAh·g-1,电化学性能好.  相似文献   

12.
在以LiNi1/3Co1/3Mn1/3O2为正极,活性炭(AC)为负极的混合型锂离子超级电容器体系中,研究以LiBF4和Et4NBF4的不同配比混合为溶质的乙腈(Acetonitrile,AN)电解液对超级电容器性能的影响。结果表明,随着电解液中Et4NBF4与LiBF4的比值的增大,LiNi1/3Co1/3Mn1/3O2/AC体系超级电容器的线性放电区间逐渐变窄,循环性能逐渐变差。其中采用1 mol/L的LiBF4/AN为电解液的超级电容器的综合性能较好,其线性放电区间为0~2.7 V,倍率性能也较好,最大比功率达到23 600 W/kg,经3 000次循环后容量保持率为93.2%。  相似文献   

13.
采用超声辅助共沉淀法合成了锂离子电池用LiNi0.5Mn1.5O4正极材料,借用XRD、SEM及电化学性能测试对其进行表征,研究了超声辅助对LiNi0.5Mn1.5O4的微观结构、形貌及电化学性能的影响。研究结果表明,采用超声辅助能够消除LixNi1–xO杂相,获得粒径更为均匀的纯相尖晶石结构的LiNi0.5Mn1.5O4。超声辅助能够提高LiNi0.5Mn1.5O4的电化学性能,在2C倍率下放电20次循环后未超声和超声辅助样品的容量保持率分别为95.05%和97.42%。  相似文献   

14.
用气相沉积法(CVD)和转移法制备了石墨烯,用超声分散及搅拌的方法分别制备了导电碳黑(SP)导电浆料,导电碳黑(SP)、碳纳米管(CNTs)复合导电浆料(SP/CNTs)及导电碳黑(SP)、碳纳米管(CNTs)和石墨烯(G)复合导电浆料(SP/CNTs/G),通过扫描电镜(SEM)、四探针测试、恒流充放电测试、循环伏安测试(CV)和电化学阻抗谱测试(EIS)等方法研究了导电剂对锂离子电池正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2的表面形貌、电阻率和电化学性能的影响。结果表明:添加质量分数2%复合导电剂SP/CNTs/G的样品电阻率较小,0.2 C首次充放电比容量分别为201.93 m Ah·g~(–1)和180.29 m Ah·g~(–1),首次充放电效率为89.28%。3.0C循环5次后的放电比容量为161.45 m Ah·g~(–1),容量保持率仍有89.69%,1.0C循环50次后放电比容量为166.97 m Ah·g~(–1),容量保持率为96.65%,倍率和循环性能优良。  相似文献   

15.
采用固-液相球磨法,在原料中加入γ-氨丙基三乙氧基硅烷(KH—550)为分散剂和掺杂剂,制备了LiFePO4/C正极材料。用XRD,SEM及电化学综合测试仪研究了所制材料的结构、表观形貌及电化学性能。结果表明:制备的LiFePO4为标准的橄榄石型结构,添加KH—550后,颗粒无团聚现象,材料的倍率性能和循环性能明显改善:在0.1 C时,首次放电比容量达到157.9 mAh/g,,比未添加KH—550样品高出6.5 mAh/g,,5 C倍率放电时,容量保持在110.3 mAh/g。经过100次循环后,容量保持率为97.3%,比未添加KH—550样品高出6.4%。  相似文献   

16.
为了改善Fe3O4作为锂离子电池负极材料时循环稳定性差的问题,以铁基沸石咪唑酯框架结构材料(Fe-ZIF)为前驱体,使用多巴胺通过聚合反应与其复合,再与石墨烯通过静电吸附作用组装,经过煅烧碳化,制备了Fe3O4@NC/G复合材料。研究结果表明,多巴胺与石墨烯的引入有效提高了Fe3O4在充放电过程中的电化学稳定性。在0.1 A·g-1电流密度下,充放电循环30圈,Fe3O4@NC/G的放电比容量为1005.6 mAh·g-1。当电流密度为2 A·g-1时,经过300圈循环,其放电比容量仍有838.3 mAh·g-1。Fe3O4@NC/G复合材料优异的电化学性能归因于独特的结构设计,这对其他负极材料的构筑提供了一定的参考价值。  相似文献   

17.
在含有Li+、Co2+、Ni2+、Mn2+离子的混合溶液中加入(NH4)2CO3作沉淀剂,通过一步共沉淀反应得到含有四种金属离子的混合沉淀前驱体。前驱体经烘干,研磨后在不同温度(700~1 000 ℃)及不同时间(6~24 h)条件下进行烧结,即得到LiNi1/3Co1/3Mn1/3O2粉体。分别通过X射线衍射(XRD)、扫描电镜(SEM)及循环伏安(CV)、交流阻抗对制备粉体的微结构进行表征和对样品的电化学性能进行测试。结果表明:获得的LiNi1/3Co1/3Mn1/3O2粉体为-NaFeO2层状结构,颗粒分布均匀,放电比电容高,阻抗小。其中在900 ℃下烧结12 h所得的LiNi1/3Co1/3Mn1/3O2粉体电化学性能最优。当电压窗口在(0~1.4)Vvs.SCE、扫描速度为5 mVs-1、电解液为1 molL-1 Li2SO4溶液时,其比容量可达399.46 Fg-1;并且其阻抗也最小。  相似文献   

18.
通过碳热还原法合成了锂离子电池正极材料Li3V2(PO4)3,研究了球磨和碳含量对Li3V2(PO4)3的合成和电化学性能的影响.利用XRD、SEM和电化学测试对Li3V2(PO4)3进行研究表明,经过球磨合成的样品XRD晶面衍射峰的强度增强,样品颗粒均匀细化;样品中随着碳含量的增加,其XRD晶面衍射峰的强度减弱,样品颗粒趋于细化;经过球磨4 h,且原料中碳过量30%合成的Li3V2(PO4)3样品的首次放电容量为117 mAh/g,常温下循环30次后容量为105 mAh/g,在55℃高温下循环30次后容量103 mAh/g.  相似文献   

19.
采用并流共沉淀法制备了前驱体Ni0.8Co0.2(OH)2,然后采用高温固相反应法制备了锂离子电池正极材料LiNi0.8Co0.2O2,通过热重分析(TG)、X射线衍射(XRD)、扫描电子显微镜(SEM)与恒流充放电测试等研究了烧结温度对所制备材料物相结构、微观形貌和电化学性能的影响。结果表明,在卧式管式炉中空气气氛下进行两段控温烧结:第一段烧结温度为700℃,第二段烧结温度为750℃时,合成的LiNi0.8Co0.2O2具有良好的六方晶系α-NaFeO2层状结构;在0.5C充放电倍率下和2.7-4.3 V电压范围内,其首次放电比容量为153.0 mAh/g,20次循环后的容量保持率高达98.5%。  相似文献   

20.
锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的研究进展   总被引:1,自引:0,他引:1  
层状结构的LiNi1/3Co1/3Mn1/3O2正极材料具有比容量高、循环性能优异、成本较低和对环境友好的特点.综述了锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料最近几年的研究现状与进展,并对其晶体结构特征、合成方法、掺杂与包覆改性以及表面修饰进行了评述,提出了目前锂离子电池正极材料研究中存在的问题,并对它未来的发展趋势进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号