首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a switched-capacitor readout circuit topology integrated with a THz antenna and field-effect transistor detector is analyzed, designed, and fabricated in a 0.13-μm standard CMOS technology. The main objective is to perform amplification and filtering of the signal, as well as subtraction of background in case of modulated source, in order to avoid the need for an external lock-in amplifier, in a compact implementation. A maximum responsivity of 139.7 kV/W, and a corresponding minimum NEP of 2.2 nW/√Hz, was obtained with a two-stage readout circuit at 1 kHz modulation frequency. The presented switched-capacitor circuit is suitable for implementation in pixel arrays due to its compact size and power consumption (0.014 mm2 and 36 μW).  相似文献   

2.
A real-time terahertz (THz) imaging system was demonstrated based on a 320?×?240 uncooled microbolometer detector combined with a 2.52 THz far-infrared CO2 laser. On the top of micro-bridge structure (35?×?35 μm2), a 10 nm nickel-chromium (NiCr) thin film was deposited to enhance THz absorption, which was fabricated by a combined process of magnetron sputtering and reactive ion etching (RIE). By mechanical simulation using design of experiment (DOE) method, the minimum deformation was optimized to 0.0385 μm, and a measured deformation of 0.097 μm was achieved in the fabrication. The fabricated micro-bridge pixel was used for THz detection, and a responsivity of 1235 V/W was achieved with a noise equivalent power (NEP) of 87.4 pW/Hz1/2. THz imaging of metal gasket covered by label paper, paper clip in an envelope, and watermark of a banknote was demonstrated by a combination of histogram equalization (HE) and linear enhancement algorithm.  相似文献   

3.
A self-mixing terahertz signal detector combined with a low noise amplifier and a properly balanced - folded dipole or slot antenna for concentrating millimeter wave signals to NMOS detectors is described. The detector was optimized to 300 GHz signals. The noise equivalent power (NEP) was estimated to 320 pW/√Hz while the total output referred noise of 2.1 μV/(Hz)1/2 was measured at amplifier gain of 46 dB. This was achieved by using NMOS mixer devices optimized for resistive mixing that operate in a linear region of operation where the channel voltage is set close to zero by means of regulating the virtual ground level. The NMOS device, which is positioned at the antenna connections, has a minimum channel length that permits a far more precise calculation of the coupling devices. A position like termination of the two symmetrical detector devices was distributed between an antenna area and the amplification stage. The detectors were fully integrated using the 250 nm CMOS technology. Good matching was found between mathematically analyzed and simulated noise performances and prototypes measurements, where comparable measurements were performed on a THz array which consists of four pixels with folded dipole antennas or those with slot type antennas.  相似文献   

4.
在场效应晶体管太赫兹探测器中,合理的天线设计可以增强晶体管和太赫兹波之间的耦合效率,从而提高太赫兹探测器的响应度.提出一种基于晶体管栅极边缘沟道电场的仿真来设计平面天线的方法.这种方法尤其适用于太赫兹波段晶体管输入阻抗不容易得到的情况.通过流片完成的基于氮化镓高电子迁移率晶体管的太赫兹探测器的响应度测试证实了这种方法的有效性.集成碟形天线和双偶极子天线的太赫兹探测器最大响应度分别在170.7 GHz(1568.4 V/W)和124.3 GHz(1047.2 V/W)频点处测得,这个测试结果接近基于晶体管栅极边缘沟道电场的仿真结果.  相似文献   

5.
Intense Terahertz (THz)-wave generation and highly sensitive THz-wave detection were obtained by wavelength conversion with nonlinear optical susceptibility χ(2) of LiNbO3 crystals. Maximum peak output of about 50 kW (5 μJ/pulse) was demonstrated in an injection-seeded THz-wave parametric generator pumped by post-amplified emission from a microchip Nd:YAG laser. Using the sub-nanosecond pulse duration of the laser proposed herein provides effective mitigation of stimulated Brillouin scattering in LiNbO3, producing higher gain for wavelength conversion between near-infrared (near-IR) pump light and THz waves. Monochromatic THz radiation was obtained in the continuous tuning range of 0.7–2.9 THz. Additionally, highly sensitive THz-wave detection was demonstrated based on up-conversion from THz waves to near-IR light as well as efficient THz-wave generation. The signal generated with non-collinear phase-matching condition showed spectroscopic detection on the screen apart from the LiNbO3 crystal. Highly sensitive detection with minimum energy of about 80 aJ/pulse (0.8 μW at peak) and a large dynamic range of more than 100 dB were achieved in this experiment.  相似文献   

6.
A high-current-responsivity terahertz (THz) detector was fabricated using a broadband bow-tie antenna and an InAlAs/InGaAs high-electron-mobility transistor (HEMT) with a short gate length. High-current responsivity can be achieved by using a short gate length; the resulting high transconductance exhibited ballistic transport in the channel. We fabricated the HEMT detector with a 50-nm-long channel; the transconductance was 1.2 S/mm and the subthreshold slope was 120 mV/dec, yielding a high-current responsivity (~5 A/W) and a cutoff frequency of 460 GHz. We also measured the modulation bandwidth of the THz detector using a heterodyne mixing technique with a uni-traveling carrier photodiode (UTC-PD) for providing the radio frequency (RF) and a frequency multiplier as a local oscillator. The intensity of the intermediate signal (IF) was measured by changing the frequency of the UTC-PD; very high bandwidths of up to 26 GHz were obtained. The experimental results agree well with electromagnetic simulations, which indicate that the bandwidth is determined by the external circuit. The conversion gain from RF to IF was ?2 dB in the heterodyne mixing by using the HEMT detector.  相似文献   

7.
This paper describes a readout integrated circuit architecture for an infrared focal plane array intended for infrared network-attached video cameras in surveillance applications. The focal plane array consists of 352 × 288 uncooled thin-film microbolometer detectors with a pitch of 25 μm, enabling ambient temperature operation. The circuit features a low-noise readout path, detector resistance mismatch correction and a non-linear ramped current pulse scheme for the electrical biasing of the detectors in order to relax the dynamic range requirement of amplifiers and the ADC in the readout channel, imposed by detector process variation and self-heating during readout. The design is implemented in a 0.35-μm standard CMOS process and two versions of a smaller 32 × 32-pixel test chip have been fabricated and measured for evaluation. The latest test chip achieves a dynamic range of 97 dB and an input-referred RMS noise voltage of 6.4 μV yielding an estimated NETD value of 26 mK with f/1 optics. At a frame rate of 60 FPS the chip dissipates 170 mW of power from a 3.4 V supply.  相似文献   

8.
This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna’s impedance to have high responsivity.  相似文献   

9.
A new, wide-band, high-speed and high-sensitivity THz detector has been developed. The prototype detector consists of a parabolic cylindrical mirror, a long wire antenna and a Schottky barrier diode. Direct detection measurements have shown a stable sensitivity of 150 ± 50 V/W for 1–2 THz without any adjustments. The long wire antenna was fixed at the focus of parabolic cylindrical mirror then it has been realized less operation steps, easy coupling to the external THz signals and a dramatic enhancement in the practicality of this system. The optically polished mirror and frosted surface one showed comparable sensitivities, thus easy polishing and less cost mirror fabrication can be applied for this system. The radiation pattern showed a maximum radiation angle of approximately 23° with its dominant main lobe, which was attributed to the wire antenna character and confirmed good agreements with classical antenna theory.  相似文献   

10.
We investigate the influence of the surface properties of a low-temperature-grown GaAs photoconductive antenna on the terahertz (THz) emission strength, using a specially designed THz time-domain spectroscopy system. The system allows us to excite six different positions along the 10 μm gap of a coplanar stripline antenna with a length of 10 mm without changing the alignment of the optical or THz beam path. A comparison to the surface roughness and the grain size which are extracted from an atomic force and a scanning electron microscope is given.  相似文献   

11.
This paper presents a highly sensitive terahertz (THz) calorimeter developed using a magnetically loaded epoxy as a broadband absorber. The reflection loss of the absorber, which has a pyramidally textured surface, is less than 0.04, as determined using a THz time-domain spectrometer and a vector network analyzer. The THz calorimeter successfully enabled the measurement of the absolute THz power from a photomixer at microwatt levels at room temperature. The measurement uncertainties at a 95% confidence level were 6.2% for 13 μW at 300 GHz and 5.6% for 1.5 μW at 1 THz, respectively. Details of the evaluation and uncertainty analyses are also presented.  相似文献   

12.
A novel multisampling time-domain architecture for CMOS imagers with synchronous readout and wide dynamic range is proposed. The proposed multisampling architecture requires only a single bit per pixel memory instead of 8 bits which is typical for time-domain active pixel architectures. The goal is to obtain a time-domain imager with high dynamic range that requires lower number of transistors per pixel in order to achieve higher fill-factor. The maximum frame rate is analyzed as a function of number of bits and array size. The analysis shows that it is possible to achieve high frame rates and operate in video mode having 10 bit pixel data resolution. Also, we present analysis of the impact of comparator offset voltage on the fixed pattern noise. The architecture was implemented in an imager prototype with 32 × 32 pixel array fabricated in AMS CMOS 0.35 μm and was characterized for sensitivity, noise and color response. The pixel size is 30 μm × 26 μm and it is composed of an n+/psub photodiode, a comparator and a D flip-flop with a 16% fill-factor.  相似文献   

13.
A new silicon pin-diode-based pixel detector for ionizing particles integrating a two-dimensional array of detecting elements with readout circuitry has been developed and extensively tested. The signal charge is collected on a low-capacitance electrode avoiding loss of charge into the local readout circuitry within each pixel. The spatial resolution for a given circuitry size is optimized. The approach required back side patterning of the wafer, the only nonconventional part in the Stanford BiCMOS based manufacturing process. Thirteen masks on the front side of the wafer and three on the back yielded both CMOS readout circuitry and detecting elements. A gettering step helped obtain a high minority carrier lifetime (500 μs). Test results obtained by infrared illumination, gamma rays, and high-energy particles, which have been described in detail elsewhere, are summarized. They include a signal to single-channel-noise performance of about 150 to 1 for a minimum ionizing particle, which is an order of magnitude better than silicon strip detectors currently used, and a record-breaking spatial resolution in the direction of smallest pixel pitch (standard deviation of about 1.8 μm). We describe the device and chip operation of the new detector in detail  相似文献   

14.
In this article, a CMOS prototype vision chip with digital pixel structure for grey level image segmentation by means of thresholding and time multiplexing is presented. This approach splits scenes into m frames (one frame per grey level interval). One advantage about this design is that an analogue to digital converter is not required. Moreover, image acquisition and segmentation are performed at the same time by pixels that work simultaneously with each other. The performance from each pixel deals with a maximum quantum efficiency of 0.65, pixel size of 132 μm × 176 μm, fill factor of 0.78%, dark current of 15 mV/s, power dissipation per frame of 341 μW, minimum exposure time of 28.6 μs, maximum exposure time of 1.9 ms, random noise of 3 mV, optical dynamic range of 51 dB and majority of cells with 0–3% of mismatch. Scene decomposition into 256 images occurs in 30.5 ms with white illumination of 650 Lx.  相似文献   

15.
一个128×128CMOS快照模式焦平面读出电路设计   总被引:3,自引:0,他引:3  
本文介绍了一个工作于快照模式的CMOS焦平面读出电路新结构——DCA(Direct-injection Charge Amplifier)结构.该结构像素电路仅用4个MOS管,采用特殊的版图设计并用PMOS管做复位管,既可保证像素内存储电容足够大,又可避免复位电压的阈值损失,从而提高了读出电路的电荷处理能力.由于像素电路非常简单,且该结构能有效消除列线寄生电容Cbus的影响,因此该结构非常适用于小像素、大规模的焦平面读出电路.采用DCA结构和1.2μm双硅双铝(DPDM-Double-Poly Double-Metal)标准CMOS工艺设计了一个128×128规模焦平面读出电路试验芯片,其像素尺寸为50×50μm2,电荷处理能力达11.2pC.本文详细介绍了该读出电路的体系结构、像素电路、探测器模型和工作时序,并给出了精确的HSPICE仿真结果和试验芯片测试结果.  相似文献   

16.
对一种基于生长在半绝缘InP衬底上InGaAs外延材料的新型太赫兹室温探测器进行研究。首先在HFSS理论计算的基础上对器件天线阻抗、驻波比、辐射方向图等特性参数进行分析。其次,通过光刻、腐蚀、溅射、点焊等工艺制作出对称金属电极天线耦合的太赫兹探测器件。结合自己搭建的0.037 5 THz器件响应测试系统,得到铟镓砷太赫兹探测器件在不同偏置电流和不同调制频率下的器件响应曲线。结果表明器件具有明显的光电信号和快的响应速度。通过利用高莱探测器进行标定,得到器件在0.037 5 THz时的电压灵敏度优于6 V/W,器件噪声等效功率NEP优于1.610-9 W/Hz1/2,器件响应时间优于300 s。  相似文献   

17.
We have demonstrated the possibility of employing a device, designed to operate at terahertz (THz) frequencies, for sensing materials. The device consists of a waveguide section with a pair of stubs located at the middle and oriented transversely to the waveguide axis. The two stubs function as a resonator and, hence, the device would behave as a filter in the THz domain. The device was fabricated by laser micromachining of InSb pellets and was characterized by THz time-domain transmission spectroscopy. For a waveguide width of 740 μm and stub length of 990 μm, a transmission minimum is seen to occur at 0.265 THz. We investigated the capability of the device to sense polystyrene, dissolved in toluene, loaded into the stubs. The consequent change in the refractive index in the stubs alters the transmitted signal intensity. Our results show that, a change in concentration of polystyrene even by 1 mol/L, leads to measurable change in the transmission coefficient close to the resonant frequency of the device. Thus, our device operating at THz frequencies shows promising potential as chemical and bio sensors.  相似文献   

18.
The most widely used architecture in large area amorphous silicon (a-Si) flat panel imagers is a passive pixel sensor (PPS), which consists of a detector and a readout switch. While the PPS has the advantage of being compact and amenable toward high-resolution imaging, reading small PPS output signals requires external circuitry such as column charge amplifiers that produce additional noise and reduce the minimum readable sensor input signal. This work presents a current mode amorphous silicon active pixel that performs on-pixel amplification of noise-vulnerable sensor input signals to minimize the effect of external readout noise sources associated with “off-chip” charge amplifiers. Preliminary results indicate excellent small signal linearity along with a high and programmable charge gain  相似文献   

19.
To overcome the large chip area occupation for the traditional terahertz multi-frequency detector by using the antenna elements in a different frequency, a novel structure for a multi-frequency detector is proposed and studied. Based on the ring antenna detector, an embedded multi-ring antenna with multi-port is proposed for the multi-frequency detector. A single-ring and dual-ring detectors are analyzed and designed in 0.18 μ m CMOS. For the single-ring detector, the best responsivity and NEP is 701 V/W and 261 pW/Hz0.5 at the frequency of 290 GHz. For the dual-ring detector, the best responsivity is 367 V/W and 297 V/W, NEP is 578 pW/Hz0.5 and 713pW/Hz0.5, at the frequency of 600 GHz and 806 GHz, respectively. This embedded multi-ring detector has a simple structure which can be expanded easily in a compact size.  相似文献   

20.
We developed a wake-up receiver comprised of subthreshold CMOS circuits. The proposed receiver includes an envelope detector, a high-gain baseband amplifier, a clock and data recovery (CDR) circuit, and a wake-up signal recognition circuit. The drain nonlinearity in the subthreshold region effectively detects the baseband signal with a microwave carrier. The offset cancellation method with a biasing circuit operated by the subthreshold produces a high gain of more than 100 dB for the baseband amplifier. A pulse-width modulation (PWM) CDR drastically reduces the power consumption of the receiver. A 2.4-GHz detector, a high-gain amplifier and a PWM clock recovery circuit were designed and fabricated with 0.18-μm CMOS process with one poly and six metal layers. The fabricated detector and high-gain amplifier achieved a sensitivity of ?47.2 dBm while consuming only 6.8 μW from a 1.5 V supply. The fabricated clock recovery circuit operated successfully up to 500 kbps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号