首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
An analysis of rectangular folded-waveguide slow-wave structure was developed using conformal mapping technique through Schwarz’s polygon transformation and closed form expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was benchmarked for two typical millimeter-wave structures, one operating in Ka-band and the other operating in Q-band, against measurement and 3D electromagnetic modeling using MAFIA.  相似文献   

2.
A simple yet accurate equivalent circuit model was developed for the analysis of slow-wave properties (dispersion and interaction impedance characteristics) of a rectangular folded-waveguide slow-wave structure. Present formulation includes the effects of the presence of beam-hole in the circuit, which were ignored in existing approaches. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures operating in Ka- and Q-bands, and close agreements were observed. The analysis was extended for demonstrating the effect of the variation of beam-hole radius on the RF interaction efficiency of the device.  相似文献   

3.
This paper describes the analysis of helix slow-wave structure (SWS) for a high efficiency space traveling wave tube that is carried out using Ansoft HFSS and CST microwave studio, which is a 3D electromagnetic field simulators. Two approaches of simulating the dispersion and impedance characteristics of the helix slow wave structure have been discussed and compared with measured results. The dispersion characteristic gives the information about axial propagation constant (Beta). Which in turn yields the phase velocity at a particular frequency. The dispersion and impedance characteristics can be used in finding the pertinent design parameters of the helix slow-wave structure. Therefore a new trend has been initiated at CEERI to use Ansoft HFSS code to analysis of the helix slow wave structure in its real environment. The analysis of the helix SWS for Ku-band 140W space TWT has been carried out and compared with experimental results, and found is close agreement.  相似文献   

4.
The slow-wave characteristics taking no account of space harmonics for periodically iris-loaded elliptical waveguides is presented. By using the field-matching method, the dispersion equation and the mean interaction impedance for odd and even hybrid modes of this structure are derived respectively. It is indicated from the numerical calculation results that changing the eccentricity can improve the dispersion characteristics and the interaction impedance for oHEM01 mode.  相似文献   

5.
A cylindrical waveguide, provided with wedge-shaped metal vanes projecting radially inward from the wall of the guide, excited in the transverse electric (TE) mode, was analysed. The analysis was carried out considering the angular harmonics generated by the angular positioning of the vanes. A set of equations was generated in the Fourier amplitudes of field constants. The condition for nontrivial solutions for the field constants gave the dispersion relation of the structure. From the expression of power flow down the structure, its interaction impedance was also estimated. The shape of the dispersion characteristics and the value of the cutoff frequency as well as the interaction impedance characteristics of the waveguide were found to depend on the vane parameters their number as well as their radial and angular dimensions. The optimum vane parameters were obtained corresponding to the minimum variation of the slope of the ω-β dispersion plot, such parameters being useful from the standpoint of the bandwidth of a gyro-travelling-wave tube (gyro-TWT) using a vane-loaded cylindrical waveguide as the interaction structure. The dispersion and impedance characteristics, which were found typically for the TE01 mode as defined for the structure, taking four vanes, were more sensitive to the number and angular width of the vanes than to their radial depth. The value of the interaction impedance, calculated at the potential beam position, was found to be higher for a loaded waveguide than for an unloaded one, and it depended on the frequency of operation relative to the cutoff. The interaction impedance also depended on the position of the beam relative to the waveguide wall where it was estimated, and hence the optimum beam position corresponding to the maximum interaction impedance was found. The theory was validated against the dispersion characteristics reported elsewhere typically for four-vane magnetron-like structures excited in the 2π mode. Although the present study was restricted to ‘cold’ analysis of the structure in the absence of the electron beam, it could provide important feedback for analysing a gyro-TWT, using a vane-loaded cylindrical waveguide, and hence for predicting the structure parameters for the wide-band performance of the device.  相似文献   

6.
提出了一种开敞式脊加载折叠波导慢波结构.通过除去直波导段周围的金属边界,形成一种开敞式结构以减弱色散,同时在直波导段加脊以提高耦合阻抗.研究表明,和传统结构相比,新型结构在不影响带宽的前提下,有效提高了耦合阻抗,尤其在大功率设计情况下,耦合阻抗的提高接近1倍.  相似文献   

7.
A slow-wave structure intended for use in solid-state traveling-wave amplifiers is described. The structure is a meander line with adjacent conducting elements electrically connected by lumped capacitors. The dispersion curve is derived and shown to agree with experiment. The structure is found to have a passband which is dependent on the coupling capacitors. The interaction impedance is estimated.  相似文献   

8.
从行波管工作的物理特性提出了一种获得折叠波导慢波结构参数的简单方法,给定工作频率和电压,能够获得折叠波导慢波结构的初始参数.设计了D波段的折叠波导结构来验证该方法,对其冷测特性如色散、耦合阻抗进行了分析.仿真结果表明,设计的折叠波导慢波结构在中心频率处具有较平缓的色散关系,在中心频率处耦合阻抗为3.5欧姆.在电子注电压为20.6 kV,电流为15 mA时,27 mm(50个周期)的折叠波导慢波结构在220 GHz具有13.5 dB的增益,3 dB带宽为11 GHz(213~224 GHz).同时讨论了折叠波导慢波结构的微加工工艺,并通过UV-LIGA工艺获得了实验样品.  相似文献   

9.
A simple equivalent circuit analysis of the frame–rod slow-wave structure (SWS) on dielectric substrates of a traveling-wave tube (TWT) is developed, using the quasi-TEM approximation approach for the dispersion and coupling impedance characteristics of the structure. Moreover, the obtained complex dispersion equation and coupling impedance are numerically calculated. The calculation results by our theory method agree well with the results obtained by the 3D EM simulation software HFSS. It is shown that the dispersion of the frame–rod circuit is decreased; the phase velocity is reduced and the bandwidth becomes greater, while the coupling impedance decreases after filling the dielectric materials in the frame–rod SWS. In addition, a comparison of slow-wave characteristics of this structure with a rectangular helix counterpart is made. As a planar slow-wave structure, this structure has potential applications in compact TWTs based on the micro-fabrication technology, which could be scaled to millimeter wave, even to THz frequency.  相似文献   

10.
Characterized with full-metal structure, high output power and broad bandwidth, microfabricated folded waveguide is considered as a robust slow-wave structure for millimeter wave traveling-wave tubes. In this paper, cold-test (without considering the real electron beam) properties were studied and optimized by 3D simulation on slow-wave structure, for designing a 220 GHz folded waveguide traveling-wave tube. The parametric analysis on cold-test properties, i.e., phase velocity, beam-wave interaction impedance and cold circuit attenuation, were conducted in half-period circuit with high frequency structure simulator, assisted by analytical model and equivalent circuit model. Through detailed parametric analyses, interference between specified structural parameters is found on determining beam-wave interaction impedance. A discretized matrix optimization for interaction impedance was effectively carried out to overcome the interference. A range of structural parameters with optimized interaction impedance distributions were obtained. Based on the optimized results, a broadband folded waveguide with cold pass-band of about 80 GHz, flat phase velocity dispersion and fairly high interaction impedance was designed for a 220 GHz central frequency traveling-wave tube. A three-dB bandwidth of 20.5 GHz and a maximum gain of 21.2 dB were predicted by small signal analysis for a 28 mm-long lossy circuit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号