首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2D crystals with noncentrosymmetric structures exhibit piezoelectric properties that show great potential for applications in energy conversion and electromechanical devices. Quantitative visualization of piezoelectric field spatial distribution is expected to offer a better understanding of macroscopic piezoelectricity, yet remains to be realized. Here, a technique of mapping piezoelectric potential on 2D materials bubbles based on the measurements of surface potential using kelvin probe force microscope is reported. By using odd number of layers hexagonal boron nitride and MoS2 nanobubbles, strain-induced piezoelectric potential profiles are quantitatively visualized on the bubbles. The obtained piezoelectric coefficient is 3.4 ± 1.2 × 10−10 C m−1 and 3.3 ± 0.2 × 10−10 C m−1 for hBN and MoS2, in agreement with the values reported. On the contrary, homogeneous distribution of surface potential is measured on even number of layers crystals bubbles where the crystal's inversion symmetry is restored. Using such technique, in situ visualization of photogenerated charge carrier separation under piezoelectric potential is also achieved, which offers a platform of investigating the coupling between piezoelectricity and photoelectric effect, and an approach of tuning piezoelectric field. The present work should aid the understanding of local piezoelectric potential and its various affecting factors including substrate doping and external stimuli, and give insights for designing piezoelectric nanodevices based on 2D nanobubbles.  相似文献   

2.
The recent discoveries of transition‐metal dichalcogenides (TMDs) as novel 2D electronic materials hold great promise to a rich variety of artificial van der Waals (vdWs) heterojunctions and superlattices. Moreover, most of the monolayer TMDs become intrinsically piezoelectric due to the lack of structural centrosymmetry, which offers them a new degree of freedom to interact with external mechanical stimuli. Here, fabrication of flexible vdWs p–n diode by vertically stacking monolayer n‐MoS2 and a few‐layer p‐WSe2 is achieved. Electrical measurement of the junction reveals excellent current rectification behavior with an ideality factor of 1.68 and photovoltaic response is realized. Performance modulation of the photodiode via piezo‐phototronic effect is also demonstrated. The optimized photoresponsivity increases by 86% when introducing a −0.62% compressive strain along MoS2 armchair direction, which originates from realigned energy‐band profile at MoS2/WSe2 interface under strain‐induced piezoelectric polarization charges. This new coupling mode among piezoelectricity, semiconducting, and optical properties in 2D materials provides a new route to strain‐tunable vdWs heterojunctions and may enable the development of novel ultrathin optoelectronics.  相似文献   

3.
Poly(vinylidene fluoride) (PVDF)-based polymers demonstrate great potential for applications in flexible and wearable electronics but show low piezoelectric coefficients (e.g., −d33 < 30 pC N−1). The effective improvement for the piezoelectricity of PVDF is achieved by manipulating its semicrystalline structures. However, there is still a debate about which component is the primary contributor to piezoelectricity. Therefore, current methods to improve the piezoelectricity of PVDF can be classified into modulations of the amorphous phase, the crystalline region, and the crystalline–amorphous interface. Here, the basic principles and measurements of piezoelectric coefficients for soft polymers are first discussed. Then, three different categories of structural modulations are reviewed. In each category, the physical understanding and strategies to improve the piezoelectric performance of PVDF are discussed. In particular, the crucial role of the oriented amorphous fraction at the crystalline–amorphous interface in determining the piezoelectricity of PVDF is emphasized. At last, the future development of high performance piezoelectric polymers is outlooked.  相似文献   

4.
Inorganic lead halide perovskite has become an emerging material for modern photoelectric and electronic nanodevices due to its excellent optical and electronic properties. In view of its huge dielectric and electrical properties, inorganic CsPbBr3 perovskite is introduced into the piezoelectric nanogenerator (PENG). Based on one-step electrospinning of solutions containing CsPbBr3 precursors and polyvinylidene difluoride (PVDF), in situ growth of CsPbBr3 nanocrystals in PVDF fibers (CsPbBr3@PVDF composite fibers) with highly uniform size and spatial distribution are synthesized. The CsPbBr3@PVDF composite fibers based PENG reveals an open-circuit voltage (Voc) of 103 V and a density of short-circuit current (Isc) of 170  µ A cm−2, where the Voc is comparable to the state-of-the-art hybrid composite piezoelectric nanogenerators (PENGs) and the density of Isc is 4.86 times higher than that of lead halide perovskites counterpart ever reported. Moreover, CsPbBr3@PVDF composite fibers based PENG exhibits fundamentally improved thermal/water/acid–base stabilities. This study suggests that the CsPbBr3@PVDF composite fiber is a good candidate for fabricating high-performance PENGs, promising application potentials in mechanical energy harvesting and motion sensing technologies.  相似文献   

5.
2D piezoelectric materials have strong intrinsic piezoelectricity and superior flexibility, which are endowed with huge potential to develop piezoelectric nanogenerators (PENGs). However, there are few attempts to investigate the energy harvesting of 2D ferroelectric materials. Herein, an enhanced output performance is reported by ferroelectric polarization in a PENG with exfoliated 2D ferroelectric CuInP2S6 (CIPS). Specifically, the polarized CIPS-based PENG produces a short-circuit current of 760 pA at 0.85% tensile strain, which is 3.8 times higher than that of unpolarized CIPS-based PENG. Systematical PFM and Raman analysis reveal that the ferroelectric polarization remarkably reinforces the effective piezoelectric constant of CIPS nanoflakes and boosts the in-plane migration and out-of-plane hopping of copper ions, which is the main reason for the enhancement of output performance. Furthermore, the CIPS-based PENG can not only be utilized to harvest biomechanical energy such as wrist joints movement, but also exhibits a potential for a voice recognition system integrated with deep learning technology. The classification accuracy of a series of letter sounds is as high as 96%. This study commendably broadens the application scope of 2D materials in micro-nano energy and intelligent sensors, which will have profound implications for exploring wearable nanoelectronic devices.  相似文献   

6.
Low‐power, nonvolatile memory is an essential electronic component to store and process the unprecedented data flood arising from the oncoming Internet of Things era. Molybdenum disulfide (MoS2) is a 2D material that is increasingly regarded as a promising semiconductor material in electronic device applications because of its unique physical characteristics. However, dielectric formation of an ultrathin low‐k tunneling on the dangling bond‐free surface of MoS2 is a challenging task. Here, MoS2‐based low‐power nonvolatile charge storage memory devices are reported with a poly(1,3,5‐trimethyl‐1,3,5‐trivinyl cyclotrisiloxane) (pV3D3) tunneling dielectric layer formed via a solvent‐free initiated chemical vapor deposition (iCVD) process. The surface‐growing polymerization and low‐temperature nature of the iCVD process enable the conformal growing of low‐k (≈2.2) pV3D3 insulating films on MoS2. The fabricated memory devices exhibit a tunable memory window with high on/off ratio (≈106), excellent retention times of 105 s with an extrapolated time of possibly years, and an excellent cycling endurance of more than 103 cycles, which are much higher than those reported previously for MoS2‐based memory devices. By leveraging the inherent flexibility of both MoS2 and polymer dielectric films, this research presents an important milestone in the development of low‐power flexible nonvolatile memory devices.  相似文献   

7.
Molecular doping is a powerful, tuneable, and versatile method to modify the electronic properties of 2D transition metal dichalcogenides (TMDCs). While electron transfer is an isotropic process, dipole‐induced doping is a collective phenomenon in which the orientation of the molecular dipoles interfaced to the 2D material is key to modulate and boost this electronic effect, despite it is not yet demonstrated. A novel method toward the molecular functionalization of monolayer MoS2 relying on the molecular self‐assembly of metal phthalocyanine and the orientation‐controlled coordination chemistry of axial ligands is reported here. It is demonstrated that the subtle variation of position and type of functional groups exposed on the pyridinic ligand, yields a molecular dipole with programed magnitude and orientation which is capable to strongly influence the opto‐electronic properties of monolayer MoS2. In particular, experimental results revealed that both p‐ and n‐type doping can be achieved by modulating the charge carrier density up to 4.8 1012 cm?2. Density functional theory calculations showed that the doping mechanism is primarily resulting from the effect of dipole‐induced doping rather than charge transfer. The strategy to dope TMDCs is a highly modulable and robust, and it enables to enrich the functionality of 2D materials‐based devices for high‐performance applications in optoelectronics.  相似文献   

8.
Niobate-based lead-free piezoceramics have attracted wide attention due to their excellent piezoelectric properties. Although the temperature sensitivity of piezoelectricity or strain in one sample has been solved to a certain extent, how to simultaneously improve the temperature stability of both in one sample is still an issue. Herein, by constructing multilayer composite ceramics and doping Ho element, both improved piezoelectric and strain temperature stability (the variations are below 3% under 30–100 °C) are achieved, showing great property advantage compared with previous reports. Different from the compositionally graded composite ceramic design, the Ho doping can not only increase orthorhombic-tetragonal phase transition temperature (TO-T) and then create the condition for the formation of successive phase transition, but also stabilize the oriented domain state. Therefore, the excellent temperature stability of both piezoelectricity and strain can be attributed to the multistep phase transition induced by the multilayer design, the fine regulation of TO-T interval by the optimization of lamination combination, and the stabilized polarization induced by Ho doping. The new strategy for solving both piezoelectric and strain temperature sensitivity can further promote the commercial application of potassium sodium niobate-based lead-free piezoelectric ceramics.  相似文献   

9.
Conventional bulk and thin piezoelectric materials based film bulk acoustic resonators (FBARs) are facing an insurmountable challenge for millimetric frequency applications due to the poor piezoelectric properties of the materials when their thickness reaches the sub-micron regime. Novel FBARs for ultra-high working frequencies are in urgent demand to meet the requirements of the fast-growing 5/6G telecommunication techniques. Recent advances in 2D piezoelectric nanomaterials create an opportunity in this perspective. Here, the first FBAR chip based on 2D 3R-MoS2 ultrathin piezoelectric flakes with a solidly mounted resonator (SMR) architecture is reported. The typical resonant frequency for an SMR device based on ≈200 nm 3R-MoS2 flake reaches over 25 GHz with high reproducibility. Theoretical and finite element analysis suggest that the observed resonance is of longitudinal acoustic modes. This study demonstrates for the first time that the access to 2D piezoelectric nanomaterials makes high performance piezoelectric devices feasible for various promising applications including high-speed telecommunication, acousto-optic, and sensor fields,etc.  相似文献   

10.
A novel anode material for sodium‐ion batteries consisting of 3D graphene microspheres divided into several tens of uniform nanospheres coated with few‐layered MoS2 by a one‐pot spray pyrolysis process is prepared. The first discharge/charge capacities of the composite microspheres are 797 and 573 mA h g?1 at a current density of 0.2 A g?1. The 600th discharge capacity of the composite microspheres at a current density of 1.5 A g?1 is 322 mA h g?1. The Coulombic efficiency during the 600 cycles is as high as 99.98%. The outstanding Na ion storage properties of the 3D MoS2–graphene composite microspheres may be attributed to the reduced stacking of the MoS2 layers and to the 3D structure of the porous graphene microspheres. The reduced stacking of the MoS2 layers relaxes the strain and lowers the barrier for Na+ insertion. The empty nanospheres of the graphene offer voids for volume expansion and pathways for fast electron transfer during repeated cycling.  相似文献   

11.
Organic–inorganic lead halide perovskite materials have recently attracted much attention in the field of optoelectronic devices. Here, a hybrid piezoelectric nanogenerator based on a composite of piezoelectric formamidinium lead halide perovskite (FAPbBr3) nanoparticles and polydimethylsiloxane polymer is fabricated. Piezoresponse force spectroscopy measurements reveal that the FAPbBr3 nanoparticles contain well‐developed ferroelectric properties with high piezoelectric charge coefficient (d33) of 25 pmV−1. The flexible device exhibits high performance with a maximum recordable piezoelectric output voltage of 8.5 V and current density of 3.8 μA cm−2 under periodically vertical compression and release operations. The alternating energy generated from nanogenerators can be used to charge a capacitor and light up a red light‐emitting diode through a bridge rectifier. This result innovatively expands the feasibility of organic–inorganic lead halide perovskite materials for application in a wide variety of high‐performance energy harvesting devices.  相似文献   

12.
2D layered heterostructures have attracted intensive interests due to their unique optical, transport, and interfacial properties. The laterally stitched heterojunction based on dissimilar 2D transition metal dichalcogenides forms an intrinsic pn junction without the necessity of applying an external voltage. However, no scalable processes are reported to construct the devices with such lateral heterostructures. Here, a scalable strategy, two‐step and location‐selective chemical vapor deposition, is reported to synthesize self‐aligned WSe2–MoS2 monolayer lateral heterojunction arrays and demonstrates their light‐emitting devices. The proposed fabrication process enables the growth of high‐quality interfaces and the first successful observation of electroluminescence at the WSe2–MoS2 lateral heterojunction. The electroluminescence study has confirmed the type‐I alignment at the interface rather than commonly believed type‐II alignment. This self‐aligned growth process paves the way for constructing various 2D lateral heterostructures in a scalable manner, practically important for integrated 2D circuit applications.  相似文献   

13.
Flexible materials with high electromechanical coupling performance are highly demanded for wide applications for electromechanical sensors and transducers, including mechanical energy harvesters. Here, outstanding electromechanical performance is obtained in electrospun‐aligned polyvinylidene fluoride (PVDF) fiber film. A theoretical model is developed from systematic theoretical analyses to clarify the underlying constructive piezoelectric‐triboelectric mechanism in the polarized PVDF fiber films that explains the experimental observations well. The electrospinning process induces polarization alignment and thus tunes the electron affinity for PVDF fibers with different polarization terminals, which results in the constructive piezoelectric and triboelectric responses in the obtained PVDF fiber films. Extremely large effective piezoelectric performance properties are achieved in the direct piezoelectric measurements, reaching the maximum effective piezoelectric strain and voltage coefficients of ?1065 pm V?1 and ?9178 V mm N?1, respectively, at 100 Hz. In the converse piezoelectric measurements without a significant contribution from reversible triboelectric effect, the maximum effective piezoelectric strain and voltage coefficients are ?166 pm V?1 and ?1499 V mm N?1, respectively. The theoretical analyses and experimental results show the great potential of the electrospun aligned polar PVDF fiber material for various electromechanical device applications, particularly for mechanical energy harvesting.  相似文献   

14.
Molybdenum disulfide (MoS2) semiconductors have closely been studied for potential applications in detectors, optoelectronics, and flexible electronics due to its high electrical and robust mechanical performance. Herein, the first experimental study of the high-speed ultrasound wave detection by the combinational structure of flexible MoS2 field-effect transistor (FET) and piezoelectric device based on polyvinylidene fluoride trifluoro ethylene P(VDF-TrFE) is reported. The proposed flexible MoS2 based FET device exhibits maximum mobility of 18.12 cm2 Vs−1, high on/off current ratio of ≈105, high robustness over mechanical tests, and excellent gate-pulsed switching behavior at different frequencies (10, 100, and 500 kHz), thus, utilized as supporting electronics to detect ultrasound wave at high-speed. The ultrasound waves are applied to the self-assembled piezoelectric device under different power scales (0 ≈ 1.5 W cm−2) and the transfer curve of the proposed FET is analyzed. The results show a clear detection of ultrasound waves with high stability and excellent linearity in terms of threshold voltage (Vth) shift and drain current (Ids) under different power levels. Also, the pulsed gate-switching behavior is analyzed and the ultrasound detection with high stability is observed at high-speed switching, thus, enabling the development of applications in high-speed electronic devices and biomedical imaging tools.  相似文献   

15.
Conventional power sources encounter difficulties in achieving structural unitization with complex-shaped electronic devices because of their fixed form factors. Here, it is realized that an on-demand conformal Zn-ion battery (ZIB) on non-developable surfaces uses direct ink writing (DIW)-based nonplanar 3D printing. First, ZIB component (manganese oxide-based cathode, Zn powder-based anode, and UV-curable gel composite electrolyte) inks are designed to regulate their colloidal interactions to fulfill the rheological requirements of nonplanar 3D printing, and establish bi-percolating ion/electron conduction pathways, thereby enabling geometrical synchronization with non-developable surfaces, and ensuring reliable electrochemical performance. The ZIB component inks are conformally printed on arbitrary curvilinear substrates to produce embodied ZIBs that can be seamlessly integrated with complicated 3D objects (including human ears). The conformal ZIB exhibits a high fill factor (i.e., areal coverage of cells on underlying substrates, ≈100%) that ensures high volumetric energy density (50.5 mWh cmcell−3), which exceeds those of previously-reported shape-adaptable power sources.  相似文献   

16.
A highly sensitive, lead‐free, and flexible piezoelectric touch sensor is reported based on composite films of alkaline niobate K0.485Na0.485Li0.03NbO3 (KNLN) powders aligned in a polydimethylsiloxane (PDMS) matrix. KNLN powder is fabricated by solid‐state sintering and consists of microcubes. The particles are dispersed in uncured PDMS and oriented by application of an oscillating dielectrophoretic alignment field. The dielectric constant of the composite film is almost independent of the microstructure, while upon alignment the piezoelectric charge coefficient increases more than tenfold up to 17 pC N?1. A quantitative analysis shows that the origin is a reduction of the interparticle distance to under 1.0 µm in the aligned bicontinuous KNLN chains. The temperature stable piezoelectric voltage coefficient exhibits a maximum value of 220 mV m N?1, at a volume fraction of only 10%. This state‐of‐the‐art value outperforms bulk piezoelectric ceramics and composites with randomly dispersed particles, and is comparable to the values reported for the piezoelectric polymers polyvinylidenefluoride and its random copolymer with trifluoroethylene. Optimized composite films are incorporated in flexible piezoelectric touch sensors. The high sensitivity is analyzed and discussed. As the fabrication technology is straightforward and easy to implement, applications are foreseen in flexible electronics such as wireless sensor networks and biodiagnostics.  相似文献   

17.
Developing materials that possess high electrical conductivities (σ) and Seebeck coefficients (S), low thermal conductivities (κ), and excellent mechanical properties is important to realize practical thermoelectric (TE) devices. Here, 3D hierarchical architectures consisting of hybrid molybdenum disulfide (MoS2)/carbon nanotubes (CNTs) films are fabricated with the goal of increasing σ and decreasing κ. In these films, perpendicularly orientated CNTs interpenetrate restacked MoS2 layers to form a 3D architecture, which increases the specific surface area and charge concentration. The MoS2/20 wt% CNTs film shows high σ (235 ± 5 S?cm?1), high S (68 ± 2 µV?K?1), and low κ (19 ± 2 mW?m?1?K?1). The corresponding figure of merit (ZT) reaches 0.17 at room temperature, which is 65 times higher than that of pure MoS2 film. In addition, the MoS2/20 wt% CNTs film shows a tensile stress of 38.9 MPa, which is an order of magnitude higher than that of a control MoS2 film. Using the MoS2/CNTs film as an active material and human body as a heat source, a flexible, wearable TE wristband is fabricated by weaving seven strips of the 3D porous MoS2/CNTs film. The wristband achieves an output voltage of 2.9 mV and corresponding power output of 0.22 µW at a temperature gradient of about 5 K.  相似文献   

18.
Conventionally, effective mechanical vibration energy harvesting is based on (Pb,Zr)TiO3 (PZT) ceramics, poly(vinylidene fluoride) (PVDF) polymers or PVDF/PZT or other piezoelectric composite materials, and their working temperature is normally limited to room temperature (R‐T) or below 150 °C. Here, bismuth scandium lead titanate (BiScO3‐PbTiO3, abbreviated as BSPT) ceramic is reported which has a high Curie temperature point around 450 °C and its application for high‐temperature (H‐T) vibration energy harvesting. Experimental results show that it exhibits an excellent H‐T piezoelectricity, converting mechanical vibration energy into electric power effectively in a wide temperature range from R‐T till 250 °C. This research shows the BSPT piezoelectric energy harvester having the potential application for self‐power source of wireless sensor network system in high temperature circumstance.  相似文献   

19.
Softening of piezoelectric materials facilitates the development of flexible wearables and energy harvesting devices. However, as one of the most competitive candidates, piezoelectric ceramic-polymer composites inevitably exhibit reduced power-generation capability and weak mechanical strength due to the mismatch of strength and permittivity between the two phases inside. Herein a flexible, air-permeable, and high-performance piezoceramic textile composite with a mechanically reinforced hierarchical porous structure is introduced. Based on a template-assisted sol-gel method, a three-order hierarchical ceramic textile is constructed by intertwining submillimeter-scale multi-ply ceramic fibers that are further formed by twisting micrometer-scale one-ply ceramic fibrils. Theoretical analysis indicates that large mechanical stress can be easily induced in the multi-order hierarchical structure, which greatly benefits the electrical output. Fabricated samples generate an open-circuit voltage of 128 V, a short-circuit current of 120 µA, and an instantaneous power density of 0.75 mW cm−2, much higher than the previously reported works. The developed multi-order and 3D-interconnected piezoceramic textile shows satisfactory piezoelectricity (d33 of 190 pm V−1), air permeability (45.1 mm s−1), flexibility (Young's modulus of 0.35 GPa), and toughness (0.125 MJ m−3), collectively. The design strategy of obtaining balanced properties promotes the practicality of smart/functional materials in wearables and flexible electronics.  相似文献   

20.
Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3 nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104 S m?1. The films demonstrate a room temperature power factor of 730 µW m?1 K?2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号