首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
To improve the electrochemical performance of spinel ZnMn2O4, i.e., its limited specific capacity, cycling performance, and rate properties, owing to its inherent poor electrical conductivity and large volume changes during lithiation and delithiation processes, spinel ZnMn2O4 nanocrystals are anchored into a three dimensional (3D) porous carbon aerogel (CA) through a facile solution immersion chemical route. The designed 3D spinel ZnMn2O4/CA hybrids display the advantages of both spinel ZnMn2O4 and porous CA: enormous interfacial surface area, connected 3D framework, abundant porosity and high electron transport properties of CA, and electrochemical properties of nanostructured spinel ZnMn2O4 oxide materials. The synthesized novel ZnMn2O4/CA hybrids display a significantly improved electrochemical performance, with a high reversible specific capacity, and high‐rate capability, as well as an excellent cycling performance, superior to that of previously reported ZnMn2O4‐based materials. After 50 cycles, the 50%ZnMn2O4/CA hybrid displays a reversible capacity of 833 mAh g?1 at a current density of 100 mAg‐1, much higher than the theoretical capacity of 784 mAh g?1 for pure spinel ZnMn2O4 materials, corresponding to a Coulombic efficiency of 99.9%. The greatly improved cycle stability, specific capacity, and high rate performance of the ZnMn2O4/CA hybrids can be attributed to the synergistic interaction between spinel‐structured ZnMn2O4 nanoparticles and the 3D interconnected porous CA matrix.  相似文献   

2.
Electrolytes were prepared with different LiBF4 salt concentrations in the ratio of 2:1 (w/w) Ethylene Carbonate (EC): Dimethyl Carbonate (DMC) solvents. Different LiBF4 concentrations were used in the electrolytes to assemble half-cells containing metallic Li anode and nanostructured LiMn2O4 cathode material. To investigate the effect of LiBF4 salt concentration on the electrochemical performance of nanostructured LiMn2O4 cathode material, electrochemical tests were performed at room temperature. For LiBF4–EC–DMC based electrolytes, the optimum LiBF4 salt concentration was found and results showed that higher salt concentration provides higher electrochemical capacity for the bare nanostructured LiMn2O4 cathode materials but did not result in preventing capacity fade due to electrode degradation.  相似文献   

3.
Computational modeling is vital for the fundamental understanding of processes in Li‐ion batteries. However, capturing nanoscopic to mesoscopic phase thermodynamics and kinetics in the solid electrode particles embedded in realistic electrode morphologies is challenging. In particular for electrode materials displaying a first order phase transition, such as LiFePO4, graphite, and spinel Li4Ti5O12, predicting the macroscopic electrochemical behavior requires an accurate physical model. Herein, a thermodynamic phase field model is presented for Li‐ion insertion in spinel Li4Ti5O12 which captures the performance limitations presented in literature as a function of all relevant electrode parameters. The phase stability in the model is based on ab initio density functional theory calculations and the Li‐ion diffusion parameters on nanoscopic nuclear magnetic resonance (NMR) measurements of Li‐ion mobility, resulting in a parameter free model. The direct comparison with prepared electrodes shows good agreement over three orders of magnitude in the discharge current. Overpotentials associated with the various charge transport processes, as well as the active particle fraction relevant for local hotspots in batteries, are analyzed. It is demonstrated which process limits the electrode performance under a variety of realistic conditions, providing comprehensive understanding of the nanoscopic to microscopic properties. These results provide concrete directions toward the design of optimally performing Li4Ti5O12 electrodes.  相似文献   

4.
Nanoscale spinel lithium manganese oxide is of interest as a high‐rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn2O4) between 20 and 200 nm in thickness by room‐temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn2O4 thin films in electrolytes containing Li+, Na+, K+, and Mg2+ are investigated. A unified electrochemical band‐diagram (UEB) analysis of LiMn2O4 informed by screened hybrid density functional theory calculations is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn2O4. It is shown that the incorporation of Li+ or other cations into the host manganese dioxide spinel structure (λ‐MnO2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn2O4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn2O4 arises from bulk electronic charge‐switching which does not require compensating cation mass transport. The hybrid ALD‐electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materials for ion‐incorporation charge storage.  相似文献   

5.
Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of ?0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm?2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm?2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.  相似文献   

6.
Reversible nanostructured electrode materials are at the center of research relating to rechargeable lithium batteries, which require high power, high capacity, and high safety. The higher capacities and higher rate capabilities for the nanostructured electrode materials than for the bulk counterparts can be attributed to the higher surface area, which reduces the overpotential and allows faster reaction kinetics at the electrode surface. These electrochemical enhancements can lead to versatile potential applications of the batteries and can provide breakthroughs for the currently limited power suppliers of mobile electronics. This Feature Article describes recent research advances on nanostructured cathode and anode materials, such as metals, metal oxides, metal phosphides and LiCoO2, LiNi1–xMxO2 with zero‐, one‐, two‐, and three‐dimensional morphologies.  相似文献   

7.
The large‐scale production of metal–air batteries, an appealing solution for next‐generation energy storage, requires low‐cost, earth‐abundant, and efficient oxygen electrode materials, yet insights into active catalyst structures and synergistic reactivity remain largely unknown. Here, a new bifunctional oxygen electrode based on nitrogen‐doped carbon nanotubes decorated by spinel CuCo2O4 quantum dots (CuCo2O4/N‐CNTs) is reported, outperforming the benchmark of state‐of‐the‐art noble metal catalysts. Combining spectroscopic characterization and electrochemical studies, a prominent synergetic effect between CuCo2O4 and N‐doped carbon nanotubes is uncovered: the high conductivity, large active surface area, and increase in the number of catalytic sites induced by Cu doping (i.e., Cu2+ and Cu? N) can be beneficial to the overall electrocatalytic activities. Remarkably, the native flexibility of CuCo2O4/N‐CNTs allows its direct use as reversible oxygen electrodes in Zn–air batteries either with liquid alkaline electrolyte or in the all‐solid‐state configuration. The prepared devices demonstrate excellent discharging/charging performance, large energy density (83.83 mW cm?2 in liquid state, 1.86 W g?1 in all‐solid‐state), and long lifetime (48 h in liquid state, 9 h in all‐solid‐state), holding great promise in the practical application of rechargeable metal–air batteries and other fuel cells.  相似文献   

8.
The large‐scale production of metal–air batteries, an appealing solution for next‐generation energy storage, requires low‐cost, earth‐abundant, and efficient oxygen electrode materials, yet insights into active catalyst structures and synergistic reactivity remain largely unknown. Here, a new bifunctional oxygen electrode based on nitrogen‐doped carbon nanotubes decorated by spinel CuCo2O4 quantum dots (CuCo2O4/N‐CNTs) is reported, outperforming the benchmark of state‐of‐the‐art noble metal catalysts. Combining spectroscopic characterization and electrochemical studies, a prominent synergetic effect between CuCo2O4 and N‐doped carbon nanotubes is uncovered: the high conductivity, large active surface area, and increase in the number of catalytic sites induced by Cu doping (i.e., Cu2+ and Cu?N) can be beneficial to the overall electrocatalytic activities. Remarkably, the native flexibility of CuCo2O4/N‐CNTs allows its direct use as reversible oxygen electrodes in Zn–air batteries either with liquid alkaline electrolyte or in the all‐solid‐state configuration. The prepared devices demonstrate excellent discharging/charging performance, large energy density (83.83 mW cm?2 in liquid state, 1.86 W g?1 in all‐solid‐state), and long lifetime (48 h in liquid state, 9 h in all‐solid‐state), holding great promise in the practical application of rechargeable metal–air batteries and other fuel cells.  相似文献   

9.
A facile two‐step method is developed for large‐scale growth of ultrathin mesoporous nickel cobaltite (NiCo2O4) nanosheets on conductive nickel foam with robust adhesion as a high‐performance electrode for electrochemical capacitors. The synthesis involves the co‐electrodeposition of a bimetallic (Ni, Co) hydroxide precursor on a Ni foam support and subsequent thermal transformation to spinel mesoporous NiCo2O4. The as‐prepared ultrathin NiCo2O4 nanosheets with the thickness of a few nanometers possess many interparticle mesopores with a size range from 2 to 5 nm. The nickel foam supported ultrathin mesoporous NiCo2O4 nanosheets promise fast electron and ion transport, large electroactive surface area, and excellent structural stability. As a result, superior pseudocapacitive performance is achieved with an ultrahigh specific capacitance of 1450 F g?1, even at a very high current density of 20 A g?1, and excellent cycling performance at high rates, suggesting its promising application as an efficient electrode for electrochemical capacitors.  相似文献   

10.
Manganese‐based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost, and environmental friendliness. However, their storage capacity and cycle life in aqueous Na‐ion electrolytes is not satisfactory. Herein, the development of a biphase cobalt–manganese oxide (Co? Mn? O) nanostructured electrode material is reported, comprised of a layered MnO2?H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The biphase Co? Mn? O material demonstrates an excellent storage capacity toward Na‐ions in an aqueous electrolyte (121 mA h g?1 at a scan rate of 1 mV s?1 in the half‐cell and 81 mA h g?1 at a current density of 2 A g?1 after 5000 cycles in full‐cells), as well as high rate performance (57 mA h g?1 a rate of 360 C). Electrokinetic analysis and in situ X‐ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co? Mn? O material by facilitating both diffusion‐limited redox and capacitive charge storage processes.  相似文献   

11.
Development of spinel bimetallic oxides as low‐cost and high‐efficiency catalysts for catalytic oxidation is highly desired. However, rational design of spinel oxides with controlled structure and components still remains a challenge. A general route for large‐scale preparation of spinel CoFe2O4/C nanocubes transformed from organometal‐encapsulated metal–organic frameworks (MOFs) via exchange–coordination and pyrolysis combined method is reported. Strong confinement effect between organometallics and MOFs realizes reconstruction of crystal phase and composition, but not simple metallic oxides support by Co2+ introduction. Compared with Co3O4‐Fe2O3/C, MOFs‐derived cubic nano‐CoFe2O4/C with higher surface area (115.7 m2 g?1) and favorable surface chemistry exhibits excellent catalytic activity (100% CO conversion at 105 °C) and competitive water‐resisting stability (total conversion at 145 °C for 20 h). Turnover frequency of CoFe2O4/C reaches 4.26 × 10?4 s?1 at 90 °C, two orders of magnitude higher than commercial Co3O4 . Theoretical models show that oxygen vacancies (17.7%) at exposed {112} facet on the carbon interface take superiority in nanocubic spinel phase, which allows reactive species to be strongly adsorbed on nanostructured catalysts' surface and plays key roles in hindering deactivation under moisture rich conditions. The progresses offer a promising way in the development of novel spinel oxides with tailored architecture and properties for vast applications.  相似文献   

12.
As one of the most promising negative electrode materials in lithium‐ion batteries (LIBs), SnO2 experiences intense investigation due to its high specific capacity and energy density, relative to conventional graphite anodes. In this study, for the first time, atomic layer deposition (ALD) is used to deposit SnO2, containing both amorphous and crystalline phases, onto graphene nanosheets (GNS) as anodes for LIBs. The resultant SnO2‐graphene nanocomposites exhibit a sandwich structure, and, when cycled against a lithium counter electrode, demonstrate a promising electrochemical performance. It is demonstrated that the introduction of GNS into the nanocomposites is beneficial for the anodes by increasing their electrical conductivity and releasing strain energy: thus, the nanocomposite electrode materials maintain a high electrical conductivity and flexibility. It is found that the amorphous SnO2‐GNS is more effective than the crystalline SnO2‐GNS in overcoming electrochemical and mechanical degradation; this observation is consistent with the intrinsically isotropic nature of the amorphous SnO2, which can mitigate the large volume changes associated with charge/discharge processes. It is observed that after 150 charge/discharge cycles, 793 mA h g?1 is achieved. Moreover, a higher coulombic efficiency is obtained for the amorphous SnO2‐GNS composite anode. This study provides an approach to fabricate novel anode materials and clarifies the influence of SnO2 phases on the electrochemical performance of LIBs.  相似文献   

13.
Carbon‐coated Fe3O4 nanospindles are synthesized by partial reduction of monodispersed hematite nanospindles with carbon coatings, and investigated with scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, and electrochemical experiments. The Fe3O4? C nanospindles show high reversible capacity (~745 mA h g?1 at C/5 and ~600 mA h g?1 at C/2), high coulombic efficiency in the first cycle, as well as significantly enhanced cycling performance and high rate capability compared with bare hematite spindles and commercial magnetite particles. The improvements can be attributed to the uniform and continuous carbon coating layers, which have several functions, including: i) maintaining the integrity of particles, ii) increasing the electronic conductivity of electrodes leading to the formation of uniform and thin solid electrolyte interphase (SEI) films on the surface, and iii) stabilizing the as‐formed SEI films. The results give clear evidence of the utility of carbon coatings to improve the electrochemical performance of nanostructured transition metal oxides as superior anode materials for lithium‐ion batteries.  相似文献   

14.
Layered transition metal oxide (NaxTMO2), being one of the most promising cathode candidates for sodium-ion batteries (SIBs), have attracted intensive interest because of their nontoxicity, high theoretical capacities, and easy manufacturability. However, their physical and electrochemical properties of water sensitivity, sluggish Na+ transport kinetics, and irreversible multiple-phase translations hinder the practical application. Here, a concept of surface lattice-matched engineering is proposed based on in situ spinel interfacial reconstruction to design a spinel coating P2/P3 heterostructure cathode material with enhanced air stability, rate, and cycle performance. The novel structure and its formation process are verified by transmission electron microscopy and in situ high-temperature X-ray diffraction. The electrode exhibits an excellent rate performance with the highly reversible phase transformation demonstrated by in situ charging/discharging X-ray diffraction. Additionally, even after a rigorous water sensitivity test, the electrode materials still retain almost the same superior electrochemical performance as the fresh sample. The results show that the surface spinel phase can play a vital role in preventing the ingress of water molecules, improving transport kinetics, and enhancing structural integrity for NaxTMO2 cathodes. The concept of surface lattice-matched engineering based on in situ spinel interfacial reconstruction will be helpful for designing new ultra-stable cathode materials for high-performance SIBs.  相似文献   

15.
A new effective way to improve the electrochemical activity of semiconducting metal oxide is developed by the in situ formation of conductive metal sulfide domain in the metal oxide matrix. The Li0.96Ti1.08S2?Li4Ti5O12 nanocomposites with tunable compositions and electrical properties are synthesized by the reaction of Li4Ti5O12 with CS2 at elevated temperature. The resulting incorporation of conductive Li0.96Ti1.08S2 domain in the Li4Ti5O12 matrix is effective in enhancing the electrical conductivity and electrode activity of semiconducting lithium titanate. As anode materials for lithium ion batteries, the obtained Li0.96Ti1.08S2?Li4Ti5O12 nanocomposites show much greater discharge capacity and better rate characteristics than does the pristine Li4Ti5O12. The usefulness of the present method is further evidenced from the improvement of the electrochemical activity of semiconducting CsTi2NbO7 after the reaction with CS2. The present study clearly demonstrates the in situ formation of conductive metal sulfide domain using CS2 liquid can provide an efficient and universal way to improve the electrode functionality of semiconducting metal oxide.  相似文献   

16.
Binary metal oxides has been regarded as a promising class of electrode materials for high‐performance energy storage devices since it offers higher electrochemical activity and higher capacity than mono‐metal oxide. Besides, rational design of electrode architectures is an effective solution to further enhance electrochemical performance of energy storage devices. Here, the advanced electrode architectures consisting of carbon textiles uniformally covered by mesoporous NiCo2O4 nanowire arrays (NWAs) are successfully fabricated by a simple surfactant‐assisted hydrothermal method combined with a short post annealing treatment, which can be directly applied as self‐supported electrodes for energy storage devices, such as Li‐ion batteries, supercapacitors. The as‐prepared mesoporous NiCo2O4 nanowires consist of numerous highly crystalline nanoparticles, leaving a large number of mesopores to alleviate the volume change during the charge/discharge process. Electrode architectures presented here promise fast electron transport by direct connection to the growth substrate and facile ion diffusion path provided by both the abundant mesoporous structure in nanowires and large open spaces between neighboring nanowires, which ensures every nanowire participates in the ultrafast electrochemical reaction. Benefiting from the intrinsic materials and architectures features, the unique binder‐free NiCo2O4/carbon textiles exhibit high specific capacity/capacitance, excellent rate capability, and cycling stability.  相似文献   

17.
The electrochemical performances of 1D SnO2 nanomaterials, nanotubes, nanowires, and nanopowders, are compared to define the most favorable morphology when SnO2 nanomaterials are adopted as the electrode material for lithium‐ion batteries. Changes in the morphology of SnO2 are closely related with its electrochemical performance. Some SnO2 nanomaterials feature not only an increased energy density but also enhanced Li+ transfer. The correlation between the morphological characteristics and the electrochemical properties of SnO2 nanomaterials is discussed. The interesting electrochemical results obtained here on SnO2 nanomaterials indicate the possibility of designing and fabricating attractive nanostructured materials for lithium‐ion batteries.  相似文献   

18.
The construction of bifunctional electrode materials for hydrogen evolution reaction (HER) and lithium‐ion batteries (LIBs) has been a hot topic of research. Herein, metal–organic frameworks (MOFs) derived micro‐/nanostructured Ni2P/Ni hybrids with a porous carbon coating (denoted as Ni2P/Ni@C) are prepared using a feasible pyrolysis–phosphidation strategy. On the one hand, the optimal Ni2P/Ni@C catalyst exhibits superior HER performance with a low overpotential of 149 mV versus a reversible hydrogen electrode (RHE) at 10 mA cm?2 and excellent durability. The density functional theory computations verify that the strong synergistic effect between Ni2P and Ni could optimize the electronic structure, thus rendering the enhanced electrocatalytic performance. On the other hand, the Ni2P/Ni@C electrode displays a reversible capacity of 597 mAh g?1 after 1000 cycles at 1000 mA g?1 and improved rate capability as an anode for LIBs, owing to the well‐organized micro‐/nanostructure and conductive Ni core. In addition, the electrochemical reaction mechanism of the Ni2P/Ni@C electrode upon lithiation/delithiation is investigated in detail via ex situ X‐ray powder diffraction and X‐ray photoelectron spectroscopy methods. It is expected that the facile and controllable approach can be extended to fabricate other MOF‐based metal phosphides/metal hybrids for electrochemical energy storage and conversion systems.  相似文献   

19.
In this work, a new facile and scalable strategy to effectively suppress the initial capacity fading of iron oxides is demonstrated by reacting with lithium borohydride (LiBH4) to form a B‐containing nanocomposite. Multielement, multiphase B‐containing iron oxide nanocomposites are successfully prepared by ball‐milling Fe2O3 with LiBH4, followed by a thermochemical reaction at 25–350 °C. The resulting products exhibit a remarkably superior electrochemical performance as anode materials for Li‐ion batteries (LIBs), including a high reversible capacity, good rate capability, and long cycling durability. When cycling is conducted at 100 mA g?1, the sample prepared from Fe2O3–0.2LiBH4 delivers an initial discharge capacity of 1387 mAh g?1. After 200 cycles, the reversible capacity remains at 1148 mAh g?1, which is significantly higher than that of pristine Fe2O3 (525 mAh g?1) and Fe3O4 (552 mAh g?1). At 2000 mA g?1, a reversible capacity as high as 660 mAh g?1 is obtained for the B‐containing nanocomposite. The remarkably improved electrochemical lithium storage performance can mainly be attributed to the enhanced surface reactivity, increased Li+ ion diffusivity, stabilized solid‐electrolyte interphase (SEI) film, and depressed particle pulverization and fracture, as measured by a series of compositional, structural, and electrochemical techniques.  相似文献   

20.
Binary metal oxides (such as NiCo2O4) are regarded as attractive electrode materials for advanced energy storage devices since they offer more electrochemical activity and higher capacity than monometal oxide. However, the volume expansion and low electronic conductivity are the main bottleneck seriously hindering their application. To overcome these barriers, a novel strategy that introduces a bimetallic oxynitride layer (NiCoON) with oxygen vacancy to the surface of NiCo2O4 nanowires as an anode for Li‐ion capacitors (LICs) is proposed. The oxygen vacancy on the surface and the modulation of multiple valence states are investigated by the electron paramagnetic resonance, X‐ray photoelectron spectroscopy characterization, and first‐principles calculation. Benefiting from the merits of substantially improved electrical conductivity and increased concentration of active sites, the optimized NiCoON electrode delivers remarkable capacity (1855 mAh g?1 at 0.2 A g?1) and rate performance. The LIC device assembled by NiCoON anodes and N‐doped carbon nanowire cathodes delivers excellent rate capability, high energy density (148.5 Wh kg?1), and outstanding power density (30 kW kg?1). This study provides a new pathway for developing bimetallic oxides with an improved performance in electrochemical energy storage, conversion fields, and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号