首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The telecommunications networks of the future are likely to be packet switched networks consisting of wide bandwidth optical fiber transmission media, and large, highly parallel, self-routing switches. Recent considerations of switch architectures have focused on internally nonblocking networks with packet buffering at the switch outputs. These have optimal throughput and delay performance. The author considers a switch architecture consisting of parallel plans of low-speed internally blocking switch networks, in conjunction with input and output buffering. This architecture is desirable from the viewpoint of modularity and hardware cost, especially for large switches. Although this architecture is suboptimal, the throughput shortfall may be overcome by adding extra switch planes. A form of input queuing called bypass queuing can improve the throughput of the switch and thereby reduce the number of switch planes required. An input port controller is described which distributes packets to all switch planes according to the bypass policy, while preserving packet order for virtual circuits. Some simulation results for switch throughput are presented  相似文献   

2.
A single-stage nonblocking N*N packet switch with both output and input queuing is considered. The limited queuing at the output ports resolves output port contention partially. Overflow at the output queues is prevented by a backpressure mechanism and additional queuing at the input ports. The impact of the backpressure effect on the switch performance for arbitrary output buffer sizes and for N to infinity is studied. Two different switch models are considered: an asynchronous model with Poisson arrivals and a synchronous model with Bernoulli arrivals. The investigation is based on the average delay and the maximum throughput of the switch. Closed-form expressions for these performance measures are derived for operation with fixed size packets. The results demonstrate that a modest amount of output queuing, in conjunction with appropriate switch speedup, provides significant delay and throughput improvements over pure input queuing. The maximum throughput is the same for the synchronous and the asynchronous switch model, although the delay is different.<>  相似文献   

3.
A switch model for ATM networks is analyzed. Its interconnection network is internally nonblocking and is provided with dedicated input and output queues, one per switch inlet and one per switch outlet. The switch operates with an internal speed-up: more than one packet per slot can be transferred from the head-of-line positions of the input queues to each output queue by the interconnection network. Two different operation modes are considered for the interaction between input and output queues: backpressure mode and queue loss mode. The analytical model developed for the evaluation of the switch performance under random traffic assumes an infinite size for the switch, arbitrary values for input and output queue size, as well as for the speed-up factor. Switch throughput, packet delay and loss performance are evaluated and the analytical model accuracy is assessed using computer simulation results  相似文献   

4.
Asynchronous transfer mode (ATM) is the transport technique for the broadband ISDN recommended by CCITT (I.121). Many switches have been proposed to accommodate the ATM that requires fast packet switching capability.1-8 The proposed switches for the broadband ISDN can be classified as being of input queueing or output queueing type. Those of the input queueing type have a throughput performance which is approximately 58 per cent that of the output queueing type. However, output queueing networks require larger amounts of hardware than input queueing networks. In this paper, we propose a new multistage switch with internal buffering that approaches a maximum throughput of 100 per cent as the buffering is increased. The switch is capable of broadcasting and self-routeing. It consists of two switching planes which consist of packet processors, 2 x 2 switching elements, distributors and buffers located between stages and in the output ports. The internal data rate of the proposed switch is the same as that of the arriving information stream. In this sense, the switch does not require speed-up. The switch has log2 N stages that forward packets in a store-and-forward fashion, thus incurring a latency of log2 N time periods. Performance analysis shows that the additional delay is small.  相似文献   

5.
The authors model the internal structure of a packet-switching node in a real-time system and characterize the tradeoff between throughput, delay, and packet loss as a function of the buffer size, switching speed, etc. They assume a simple shared-single-path switch fabric, though the analysis can be generalized to a wider class of switch fabrics. They show that with a small number of buffers the node will provide a guaranteed delay bound for high-priority traffic, a low average delay for low-priority traffic, no loss of packets at the input and low probability of packet loss at output  相似文献   

6.
An iterative switching algorithm for an input queued switch consists of a number of iterations in every time step, where each iteration computes a disjoint matching. If input is matched to output in a given iteration, a packet (if any) is forwarded from to in the corresponding time step. Most of the iterative switching algorithms use a request grant accept (RGA) arbitration type (e.g. iSLIP). Unfortunately, due to this particular type of arbitration, the matching computed in one iteration is not necessarily maximal (more input and output ports can still be matched). This is exactly why multiple iterations are needed. However, multiple iterations make the time step larger and reduce the speed of the switch. We present a new iterative switching algorithm (based on the RGA arbitration) called with the underlying assumption that the number of iterations is possibly limited to one, hence reducing the time step and allowing the switch to run at a higher speed. We prove that achieves throughput and delay guarantees with a speedup of 2 and one iteration under a constant burst traffic model, which makes as good as any maximal matching algorithm in the theoretical sense. We also show by simulation that achieves relatively high throughput in practice under uniform and non-uniform traffic patterns with one iteration and no speedup.  相似文献   

7.
Queueing in high-performance packet switching   总被引:14,自引:0,他引:14  
The authors study the performance of four different approaches for providing the queuing necessary to smooth fluctuations in packet arrivals to a high-performance packet switch. They are (1) input queuing, where a separate buffer is provided at each input to the switch; (2) input smoothing, where a frame of b packets is stored at each of the input line to the switch and simultaneously launched into a switch fabric of size Nb×Nb; (3) output queuing, where packets are queued in a separate first-in first-out (FIFO) buffer located at each output of the switch; and (4) completely shared buffering, where all queuing is done at the outputs and all buffers are completely shared among all the output lines. Input queues saturate at an offered load that depends on the service policy and the number of inputs N, but is approximately 0.586 with FIFO buffers when N is large. Output queuing and completely shared buffering both achieve the optimal throughput-delay performance for any packet switch. However, compared to output queuing, completely shared buffering requires less buffer memory at the expense of an increase in switch fabric size  相似文献   

8.
在FCFS(先来先服务)准则下,ATM(异步传递模式)交换机的吞吐量为0.59。文章提出了三种提高ATM交换机的吞吐量的方案:方案A(输入扩展方案)、方案B(窗口选择方案)和方案C(信元舍充方案)。笔者认为,对于方案C,所有信元都属于一个猝发的相关业务,被分配到同一个输出端口,而且每一个业务源都是IBP(中断贝努利业务进程)模型,方案C的结果表明:目标的相关性不影响吞吐量,当所有的输入业务平衡时,  相似文献   

9.
We establish some lower bounds on the speedup required to achieve throughput for some classes of switching algorithms in a input-queued switch with virtual output queues (VOQs). We use a weak notion of throughput, which will only strengthen the results, since an algorithm that cannot achieve weak throughput cannot achieve stronger notions of throughput. We focus on priority switching algorithms, i.e., algorithms that assign priorities to VOQs and forward packets of high priority first. We show a lower bound on the speedup for two fairly general classes of priority switching algorithms: input priority switching algorithms and output priority switching algorithms. An input priority scheme prioritizes the VOQs based on the state of the input queues, while an output priority scheme prioritizes the VOQs based on their output ports. We first show that, for output priority switching algorithms, a speedup S/spl ges/2 is required to achieve weak throughput. From this, we deduce that both maximal and maximum size matching switching algorithms do not imply weak throughput unless S/spl ges/2. The bound of S/spl ges/2 is tight in all cases above, based on a result in Dai et al. Finally, we show that a speedup S/spl ges/3/2 is required for the class of input priority switching algorithms to achieve weak throughput.  相似文献   

10.
Input–output queued switches have been widely considered as the most feasible solution for large capacity packet switches and IP routers. In this paper, we propose a ping‐pong arbitration scheme (PPA) for output contention resolution in input–output queued switches. The challenge is to develop a high speed and cost‐effective arbitration scheme in order to maximize the switch throughput and delay performance for supporting multimedia services with various quality‐of‐service (QoS) requirements. The basic idea is to divide the inputs into groups and apply arbitration recursively. Our recursive arbiter is hierarchically structured, consisting of multiple small‐size arbiters at each layer. The arbitration time of an n‐input switch is proportional to log4?n/2? when we group every two inputs or every two input groups at each layer. We present a 256×256 terabit crossbar multicast packet switch using the PPA. The design shows that our scheme can reduce the arbitration time of the 256×256 switch to 11 gates delay, demonstrating the arbitration is no longer the bottleneck limiting the switch capacity. The priority handling in arbitration is also addressed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
As an alternative to input-buffered switches, combined input-crosspoint buffered switches relax arbitration timing and provide high-performance switching for packet switches with high-speed ports. It has been shown that these switches, with one-cell crosspoint buffer and round-robin (RR) arbitration at input and output ports, provide 100% throughput under uniform traffic. However, under admissible traffic patterns with nonuniform distributions, only weight-based selection schemes are reported to provide high throughput. We propose an RR based arbitration scheme for a combined input-crosspoint buffered packet switch that provides nearly 100% throughput for several admissible traffic patterns, including uniform and unbalanced traffic, using one-cell crosspoint buffers. The presented scheme uses adaptable-size frames, so that the frame size adapts to the traffic pattern.  相似文献   

12.
The performance of a multicast switch, a space division switch in which a packet at an input port is routed to a subset of the output ports, is discussed. The delay under the assumption of input port buffering is determined. The system is modeled as an independent set of M/G/1 queues. A key assumption in the analysis is that output port contention is settled by random selection among the contending input ports. In order to justify this as well as the other assumptions, a Monte-Carlo simulation of the system is devised. Numerical results from the analysis and simulation of the system are presented  相似文献   

13.
Internally buffered multistage interconnection network architectures have been widely used in parallel computer systems and large switching fabrics. Migration from electrical domain to optical domain has raised the necessity of developing node architectures with optical buffers. Cascaded fibre delay line architectures can be seen as possible realizations of output and shared buffering in a 2 × 2‐switching element. These approaches can be used as buffered node architecture in a Banyan like interconnect. In this paper, we investigate and compare these approaches by using simulation methods. Different performance metrics, such as normalized throughput, average packet delay, packet loss rate and buffer utilization have been used under uniform and non‐uniform traffic models. Results show that the TC‐chain node Banyan network offer an improved normalized throughput and average packet delay performances under both traffic models without disrupting first‐in‐first‐out order of arrivals. The switched delay‐line requires fewer switching elements than TC and TTC architectures but at the cost of high packet delay. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
The performance analysis of an input access scheme in a high-speed packet switch for broadband ISDN is presented. In this switch, each input port maintains a separate queue for each of the outputs, thus n 2 input queues in an (n×n) switch. Using synchronous operation, at most one packet per input and output will be transferred in any slot. We derive lower and upper bounds for the throughput which show close to optimal performance. The bounds are very tight and approach to unity for switch sizes on the order of a hundred under any traffic load, which is a significant result by itself. Then the mean packet delay is derived and its variance is bounded. A neural network implementation of this input access scheme is given. The energy function of the network, its optimized parameters and the connection matrix are determined. Simulation results of the neural network fall between the theoretical throughput bounds  相似文献   

15.
The multiple input-queued (MIQ) asynchronous transfer mode (ATM) switch has drawn much interest as a promising candidate for a high-speed and high-performance packet switch. The most conspicuous feature of the switch is that each input port is equipped with m(1⩽m⩽N) distinct queues, each for a group of output ports. Since the MIQ switch has multiple queues, an input can serve up to m cells in a time slot, leading to an enhanced performance. We derive the average queue length, mean cell delay, and cell loss probability for the MIQ switch in terms of the number of queues in an input port (m) and input load. The results include a special case of the single input-queued (SIQ) switch (m=1), which is analyzed by Hui et al. (1987)  相似文献   

16.
Saturn: a terabit packet switch using dual round robin   总被引:8,自引:0,他引:8  
Large input-output buffering with a moderate speedup has been widely considered as the most feasible solution for large-capacity switches. We propose a new terabit per second packet switch and call it the Saturn switch. It uses a simple dual round-robin arbitration scheme to schedule packets, and achieves high throughput and low statistical delay bound. It employs a bit-sliced crossbar fabric to switch packets at 10 Gb/s at inputs and outputs, and adopts a novel token-tunneling technique to arbitrate contending packets at high speed (e.g., within 10 ns), thus achieving a switch capacity of more than 1 Tb/s with existing electronic technology.  相似文献   

17.
The multiple input-queued (MIQ) switch is the switch which manages multiple (m) queues in each input port, each of which is dedicated to a group of output ports. Since each input port can switch up to m cells in a time slot, one from each queue, it hardly suffers from the head-of-line (HOL) blocking which is known to be the decisive factor limiting the throughput of the single input-queued (SIQ) switch. As a result, the MIQ switch guarantees enhanced performance characteristics as the number of queues m in an input increases. However, the service of multiple cells from an input could cause internal speedup or expansion of the switch fabric, diluting the merit of high-speed operation in the conventional SIQ scheme. The restricted rule is contrived to circumvent this side effect by regulating the number of cells switched from an input port. We analyze the performance of the MIQ switch employing the restricted rule. For the switch using the restricted rule, the closed formulas for the throughput bound, the mean cell delay and average queue length, and the cell loss bound of the switch are derived as functions of m, by generalizing the analysis for the SIQ switch by J.Y. Hui and E. Arthurs (see IEEE J. Select. Areas Commun., vol.SAC-5, p.1262-73, 1987).  相似文献   

18.
Presents a new scheduler, the two-dimensional round-robin (2DRR) scheduler, that provides high throughput and fair access in a packet switch that uses multiple input queues. We consider an architecture in which each input port maintains a separate queue for each output. In an N×N switch, our scheduler determines which of the queues in the total of N2 input queues are served during each time slot. We demonstrate the fairness properties of the 2DRR scheduler and compare its performance with that of the input and output queueing configurations, showing that our scheme achieves the same saturation throughput as output queueing. The 2DRR scheduler can be implemented using simple logic components, thereby allowing a very high-speed implementation  相似文献   

19.
The nonuniform traffic performance on a nonblocking space division packet switch is studied. When an output link is simultaneously contended by multiple input packets, only one can succeed, and the rest will be buffered in the queues associated with each input link. given the condition that the traffic on each output is not dominated by individual inputs, this study indicates that the output contention involved by packets at the head of input queues can be viewed as an independent phase-type process for a sufficiently large size of the switch. Therefore, each input queue can be modeled by an independent Geom/PH/1 queueing process. Once the relative input traffic intensities and their output address assignment functions are defined, a general formulation can be developed for the maximum throughput of the switch in saturation. The result indicates under what condition the input queue will saturate. A general solution technique for the evaluation of the queue length distribution is proposed. The numerical study based on this analysis agrees well with simulation results  相似文献   

20.
This paper develops an improved analysis of ATM switching architectures adopting a replicated banyan interconnection network provided with dedicated input and output queues, one per switch inlet and outlet. Two different plane selection policies are studied, random choice and alternate sharing, and two different operation modes are considered for the interaction between input and output queues, backpressure and output queue loss. These different internal operations are ranked in terms of traffic performance and the problem of optimal allocation of a given buffer budget between input and output queues is addressed. The analysis, which assumes that the network is loaded by uniform traffic, always provides conservative results whereas known models are less accurate and give optimistic traffic results. Packet delay and loss probability performance is evaluated for the ATM switch and its accuracy is assessed using computer simulation also in comparison with results given by previous models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号