首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
为了研究锁模光纤激光器以增益平坦型掺铒光纤放大器作为增益介质对输出特性的影响,采用增益平坦型掺铒光纤放大器结合光纤偏振控制器、偏振相关光隔离器组成锁模光纤激光器,基于非线性偏振旋转锁模技术,实现稳定、自起振锁模运转,得到了中心波长1560nm、重复频率6.495MHz、单脉冲能量0.7nJ、脉宽1.5ps的超短光脉冲。同时实验观察到峰值波长为1557nm和1570nm的双峰值波长锁模脉冲的产生。结果表明,采用增益平坦型掺铒光纤放大器替代普通掺铒光纤组成锁模光纤激光器,可获得较高单脉冲能量的超短光脉冲,锁模脉冲的输出光谱可能出现双峰结构,从而可为超短脉冲光纤激光器设计及实用化提供参考。  相似文献   

2.
报道了基于半导体纳秒调制技术的百瓦级、线性偏振掺铥光纤激光器。该激光器采用调制半导体激光器作为种子源,脉冲宽度为20 ns,重复频率在200 k Hz~1 MHz范围内连续可调。当重复频率为200 k Hz时,经主功率振荡放大器(MOPA)得到100 W平均功率输出。最高输出功率时,由于存在增益整形机制,脉冲宽度由20 ns降低为6 ns。相应的峰值功率达到83 k W,单脉冲能量为0.5 m J,最高输出功率下系统输出偏振消光比达到17 d B。据本文所知,这是首次报道基于半导体调制技术的百瓦级、纳秒脉宽、线偏振的掺铥光纤激光器。  相似文献   

3.
利用非线性偏振旋转效应实现了掺YB3 光纤环形腔激光器的被动锁模.锁模脉冲的中心波长为1.05/μm,重复频率为22.22 MHz,光谱带宽为27.066 nm.被动锁模脉冲经掺Yb3 单模光纤放大器放大,再由单光栅脉冲压缩器进行色散补偿,最终获得了脉宽为120 fs,平均功率为12.5 mW,能量达0.56 nJ的稳定激光脉冲.最后分析了输出光脉冲的稳定性.  相似文献   

4.
超短脉冲光纤激光器在工业、医学、科研等许多领域有着重要的应用。报道了基于全保偏非线性放大环形镜(NALM, nonlinear amplifying loop mirror)锁模的掺镱光纤激光器,通过调整腔内无源光纤的长度和位置,实现了21 MHz~100 kHz重复频率下的锁模。在21.16 MHz重复频率下实现了3 dB光谱带宽为9.1 nm、脉宽为5.3 ps的单脉冲锁模输出,经压缩后脉宽为352 fs。当重复频率为5.92 MHz时,获得了3 dB光谱带宽最宽为30 nm和压缩脉宽最窄为177 fs的锁模脉冲输出。受限于光纤长度,当最低重复频率为100 kHz时,从振荡器直接输出的锁模脉冲的单脉冲能量为104 nJ,脉宽为300 ps,经压缩后脉宽为1.053 ps。在所有重复频率下,锁模脉冲都具有宽光谱、可压缩至亚皮秒量级等特性,并且不是耗散孤子共振或者类噪声脉冲。其中,当重复频率为388 kHz时,脉宽为62.7 ps、单脉冲能量为20.8 nJ的NALM锁模种子源经过单级光纤放大器后,单脉冲能量可以直接放大到3μJ,最终脉宽可以被压缩至537 fs,整个激光器系统不含脉冲选择器件和额外的多级光纤放大级,结构十分紧凑。  相似文献   

5.
采用非线性偏振旋转锁模技术,在线形腔光纤激光器获得双波长可切换方波类噪声锁模。通过调节腔参数,激光器在波长1530 nm和1563 nm处分别获得可切换单波长方波类噪声锁模,最大脉冲宽度分别为12 ns和26 ns,腔内最大的脉冲能量分别可达14.7 nJ和45.6 nJ。此外激光器还可在这两波长处实现双波长类噪声锁模,锁模脉冲呈阶梯形,最大脉宽为5 ns,阶梯形脉冲的产生主要源于不同中心波长处的方波脉冲叠加。实验结果有助于进一步理解线形腔光纤激光器中方波类噪声的产生机理和特性,并为多波长高能量光源的设计提供参考。  相似文献   

6.
非线性放大复合环形镜及被动锁模掺铒光纤激光器的研究   总被引:3,自引:1,他引:2  
提出采用两个光纤耦合器构成具有复合环的非线性放大环形镜。分析表明,改变构成非线性放大复合环形镜的光纤耦合器的耦合系数可以改变非线性复合光纤环形镜的非线性传输特性,调节非线性光反射和透射率。采用非线性放大复合环形镜与半导体饱和吸收体组成复合腔掺铒光纤激光器,获得了十分稳定的被动锁模脉冲输出,得到了重复频率为248MHz的谐频锁模脉冲序列。实验表明,采用非线性放大复合环形镜构成复合腔光纤激光器,有可能获得高重复频率的锁模脉冲。  相似文献   

7.
1053nm超短脉冲光纤激光的产生   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究环形腔掺Yb3+光纤激光器的输出特性,采用两个波长为976nm的半导体激光器作为超短脉冲激光器的抽运源,利用非线性偏振旋转锁模技术,实现了激光器的自起振锁模运转.实验中通过调节掺杂光纤的长度和偏振控制器波片的位置实现了锁模脉冲的波长调谐,在掺杂光纤长度为1.6m时,获得了波长为1053nm、最大输出功率为9.5mW、光谱宽度为6nm、重复频率为23.7MHz的超短光脉冲输出.实验结果与分析表明,采用调节光纤的长度和偏振控制器可实现超短脉冲光纤激光器的波长调谐.  相似文献   

8.
报道了Cr4+∶YAG晶体作为可饱和吸收体用于包层抽运掺镱光纤激光器被动调Q并得到稳定纳秒脉冲输出。采用环形腔和线形腔两种腔形,可有效抑制受激布里渊散射(SBS)的非线性效应,抑制自脉冲产生,从而得到稳定被动调Q脉冲输出。采用环形腔结构,得到稳定的1μs脉冲输出,时间抖动和振幅抖动均方根(RMS)值小于5%。线形腔中采用高反射率光纤布拉格光栅(FBG)作为输出腔镜,也实现稳定脉冲输出,重复频率9.1~30.3kHz可调谐,最窄脉宽156ns,远远小于国内报道的微秒量级脉冲宽度。虽然平均输出功率只有几百毫瓦,因采用光纤输出,此类脉冲激光器可作为种子源,进而与光纤放大器相匹配,经光纤放大器放大输出功率可达到几十瓦,从而满足实际工业应用需求。  相似文献   

9.
为了研究基于半导体可饱和吸收镜的被动锁模光纤激光器的输出特性,采用1480nm的半导体激光器作为抽运源,利用掺铒光纤作为增益介质,以及光纤环行器、偏振控制器、波分复用器和耦合器等构成了环形腔结构的被动锁模光纤激光器。实验中获得了峰值波长1586nm、光谱宽度4.8nm、重复频率11.2MHz、最大平均输出功率8.4mW的稳定锁模激光脉冲输出。结果表明,调整光纤偏振控制器会使光纤激光器输出脉冲的时域波形略微发生变化,在实际应用中需要注意偏振态变化对锁模光纤激光器输出脉冲时域特性的影响。这一结果对于半导体可饱和吸收镜在被动锁模光纤激光器中的应用及其特性具有一定帮助。  相似文献   

10.
设计了一种8字腔结构的激光器,用980 nm的泵浦源泵浦保偏掺铒光纤,得到了重复频率约是10 MHz双脉冲的输出,为了检验双脉冲的组成,在激光器的输出放置一个掺铒光纤放大器、偏振控制器和偏振分束,在不同的偏振态下获得了单脉冲的输出,证明双脉冲是偏振态不同的两个单脉冲组成的。  相似文献   

11.
基于光纤干涉环的掺Yb3 全光纤自调Q激光器   总被引:6,自引:1,他引:5  
对基于光纤干涉环的包层泵浦全光纤自调Q激光器进行了实验研究。实验采用掺Yb^3 双包层光纤(DCF)为增益介质,光纤Bragg光栅(FBG)作为腔镜,以及接入5m普通单模光纤的光纤干涉环,实现了较稳定的全光纤自调Q激光器,获得了脉宽3.6ns,重复频率约1kHz,峰值功率56.7kW的光脉冲。提出其产生ns脉冲的原因是瑞利散射(RS)与受激布里渊散射(SBS)的共同作用。  相似文献   

12.
张昆  周寿桓  李尧  张利明  余洋  张浩彬  朱辰  张大勇  赵鸿 《红外与激光工程》2020,49(4):0405003-0405003-6
报道了一种基于主振荡功率放大(MOPA)结构工作的全光纤窄线宽线偏振纳秒脉冲光纤激光器。脉冲种子源是由一个分布反馈直腔型(DFB)单频光纤激光器被光电调制器进行强度调制后产生的。为了抑制受激布里渊散射(SBS)效应,脉宽被调节为3 ns,并且种子源线宽被相位调制器展宽为2.9 GHz。经两级保偏掺Yb3+光纤放大器放大后,获得了平均功率142 W,重复频率1 MHz,脉冲宽度2.88 ns,峰值功率49.3 kW的脉冲激光输出。在最大输出功率时,激光光束质量因子M2约为1.15,偏振消光比(PER)大于15.4 dB。  相似文献   

13.
超短脉冲掺Yb3+光纤激光器实验研究   总被引:4,自引:1,他引:3  
报道了使用976nm半导体激光器作为抽运源。以掺Yb^3 光纤作增益介质构成环形腔激光器产生超短脉冲的实验研究。在腔体净群速度色散为正的掺Yb^3 光纤环形腔激光器中,采用非线性偏振旋转的相加脉冲锁模技术。通过调节偏振控制器的方向和减少腔内损耗,实现稳定的锁模运转。用示波器观察光纤激光器在时域的输出特性,在抽运光一定的情况下,随着光偏振状态的变化,光纤激光器锁模激光的变化呈现稳定和不稳定两个区域。在不稳定锁模区域,激光为不规则的脉冲。通过仔细调节光纤偏振控制器的位置,当光纤偏振控制器在某一适当位置时。激光器工作在稳定的锁模区域。获得最大功率为9.46mW,脉冲激光光谱宽度为10nm.脉冲的重复频率为15.4MHz。  相似文献   

14.
高重复频率大能量窄脉宽激光器在激光成像、激光加工、精密测量等领域中得到广泛应用。采用电光腔倒空技术和双棒串接结构,通过减小热透镜效应的影响并保证振荡光与抽运光的良好模式匹配,实现了高效率、大能量、窄脉宽1064nm线偏振脉冲激光输出。以偏硼酸钡(BBO)普克尔盒作为电光开关,采用低吸收系数的914nm光纤耦合半导体激光器端面抽运Nd:YVO_4晶体,提高了激光器的热稳定性。在重复频率7kHz的条件下,当谐振腔腔长为450mm,晶体吸收功率为79.6 W时,获得了脉冲宽度为5ns,最大平均输出功率为35 W,单脉冲能量为5mJ的稳定脉冲激光输出,对应的光-光转换效率为44%。  相似文献   

15.
设计了一种基于半导体激光器调制技术的978nm纳秒脉冲掺镱全光纤激光器。该激光器采用主振荡功率放大结构,由调制半导体激光种子源和一级单模单包层掺镱光纤放大器组成。半导体激光种子源的光谱中心波长通过种子光自注入方式被定义为978.3nm,调制之后的激光脉冲宽度为4.5ns,重复频率在10~50 MHz范围内可调。当半导体激光种子源调制重复频率为50 MHz时,种子光被一级单包层掺镱光纤放大器放大至115mW,相应的激光中心波长为978.3nm,3dB光谱带宽为0.11nm,放大之后光谱中没有出现明显的放大自发辐射现象。  相似文献   

16.
采用半导体可饱和吸收镜的锁模光纤激光器是构建皮秒脉冲光纤放大器的热门候选种子光源之一。本文利用非线性薛定谔方程从理论上分析了单模传输光纤和单模增益光纤的模场半径、增益光纤的光纤长度、光纤布拉格光栅的反射率、半导体可饱和吸收镜的调制深度、非饱和损耗和饱和通量对输出脉冲特性的影响。对输出激光的脉冲和光谱特性也进行了理论研究。根据仿真结果,搭建了基于非保偏线型腔和SESAM的掺镱锁模光纤激光器系统。在没有任何腔内色散补偿和外部偏振控制的情况下,获得了中心波长为1.06μm、脉冲宽度小于12.51 ps、光谱宽度为0.32 nm、重复频率为37 MHz、输出功率为2 mW的稳定锁模脉冲激光输出。在我们的实验中,激光脉冲的光谱边缘平滑,光谱分布非常接近高斯线型。最后,通过系统的仿真,近红外锁模光纤激光器的整体结构得到了优化。本文介绍的锁模光纤激光器具有紧凑的非保偏光纤结构、精简的腔内配置和较少的元器件、高质量的输出脉冲相关特性,有望为下一代皮秒脉冲光纤激光器提供性能优异的实用化种子光源。  相似文献   

17.
已有研究发现,用分布增益非线性光纤环镜放大和压缩超短光孤子不仅能避免常规掺铒光纤放大器中由于非线性效应引起的孤子崎变,而且可克服绝热放大技术放大器长度随输入脉宽增大而指数规律增大的困难。我们进一步计算了弱脉冲在分布增益非线性光纤环镜中的放大和压缩过程。结果表明,对于峰值功率比基阶孤子低得多的弱脉冲输入,用分布增益非线性光纤环镜同样可实现无崎变的脉冲能量放大和脉宽压缩;而且,经环镜放大输出的脉冲也接近基阶孤子。然而,输入脉冲峰值功率越低,实现最佳放大所需的环镜总增益越大,高阶效应对放大结果的影响越显著。  相似文献   

18.
基于SBS过程自调Q掺铒光纤激光器的研究   总被引:3,自引:0,他引:3  
利用单模光纤的非线性效应———背向受激布里渊散射 (BSBS)和光纤光栅的选频特性 ,用掺铒单模光纤作增益介质 ,采用半导体激光器连续抽运方式 ,研究了自调Q光纤激光器的运转情况 ,得到了稳定的光脉冲输出。脉冲宽度 (FWHM)约为 2 2ns,重复频率为 6 4 5MHz。  相似文献   

19.
在激光二极管端面抽运的三腔复合镜Nd…YVO4双波长激光器中,通过合理配置两个支腔腔长和输出镜透射率,采用石墨烯分散液作为可饱和吸收体,实现1064nm和1342nm双波长激光被动调Q。当1064nm支腔透射率为20%时,获得脉宽为10.8ns的1064nm脉冲和脉宽为12.5ns的1342nm脉冲,1064nm脉冲在前,两脉冲峰值的时间间隔为16ns;当1064nm支腔透射率为25%时,获得脉宽为11.3ns的1064nm脉冲和脉宽为14.2ns的1342nm脉冲,1342nm脉冲在前,两脉冲峰值的时间间隔为19ns。根据双波长谱线竞争理论和石墨烯对1064nm和1342nm激光的可饱和吸收特性,对上述实验结果给予了合理的理论解释。  相似文献   

20.
报道了一个三级主振荡功率放大(MOPA)结构的瓦级皮秒光纤激光器.第一级利用半导体可饱和吸收镜(SESAM)和光纤光栅组成线性腔,构建了一个低功率的被动锁模掺Yb3+光纤激光器,其最大平均输出功率为9.2 mW,作为整个激光器的种子源;第二级采用单模掺镱光纤放大器对种子光进行预放大,得到108 mW平均输出功率;第三级采用带树状耦合器的双包层掺镱光纤放大器进行功率放大,获得了1.9 W平均输出功率.得到的脉冲脉宽36 ps,中心波长1064 nm,重复频率29.6 MHz,峰值功率1.8 kW,相应的单脉冲能量为61 nJ.实验中观察到种子源输出光谱中有一个凹陷,这是由于光纤光栅反射率过高并且带宽较窄引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号