首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this paper we demonstrate the capabilities of our mixed-signal, multi-domain system level simulation tool, Chatoyant, to model and simulate an RF MEMS shunt switch. We verify our mechanical simulations and analysis by comparison to results from commercial simulation packages, ANSYS and CoventorWare. We show that our modeling accuracy and simulation speed are comparable to these commercial tools for specific analysis. We conclude by showing the unique capabilities of a system tool based on a modular hierarchal approach that allows one to model not only the individual components of the system but also the subtle interactions resulting in specific system behaviors.Michael Bails received his B.A. in Economics from the University of Vermont in 1995 and a B.S. in Electrical Engineering from the University of Pittsburgh in 2002 (cum laude). He worked as an undergraduate researcher in optical MEMS for Benchmark Photonics, a Pittsburgh-based start-up company from 2001 to 2002. Mr. Bails is currently pursuing his M.S. in the Department of Electrical and Computer Engineering at the University of Pittsburgh, where he is a recipient of the Rath Fellowship. His interests are in MEMS modeling with an emphasis on statistical process variations. Mr. Bails is a student member of IEEE.José A. Martínez is an Electrical Engineering Ph.D. student at the University of Pittsburgh. He received his MS from the University of Pittsburgh (2000) in Electrical Engineering. He received the BS (magna cum laude) in Electrical Engineering from the Universidad de Oriente (UDO), Venezuela, in 1993. Mr. Martínez was granted the José Feliz Rivas’ medal for high academic achievement by the Venezuelan government (1993), and scholarships by the Venezuelan Fundayacucho Society (1993) and CONICIT-UDO (1994) institution. Since 1997 he has been working in the Optoelectronic computing group at the University of Pittsburgh. His research interests include behavioral simulation, reduction order techniques, modeling of MEMs and OMEMs, CAD, VLSI and computer architecture. Mr. Martínez is a member of IEEE/LEOS, and OSA.Steven P. Levitan is the John A. Jurenko Professor of Computer Engineering in the Department of Electrical and Computer Engineering. He received the B.S. degree from Case Western Reserve University in 1972. From 1972 to 1977 he worked for Xylogic Systems designing hardware for computerized text processing systems. He received his M.S. and Ph.D. in Computer Science from the University of Massachusetts, Amherst. During that time he also worked for Digital Equipment Corporation, and Viewlogic Systems, as a consultant in HDL simulation and synthesis. He was an Assistant Professor from 1984 to 1986 in the Electrical and Computer Engineering Department at the University of Massachusetts. In 1987, Dr. Levitan joined the Electrical Engineering faculty at the University of Pittsburgh where he holds a joint appointment in the Department of Computer Science. He is Past Chair of the ACM Special Interest Group on Design Automation (SIGDA). He was awarded the ACM/SIGDA Distinguished Service Award for over a decade of service to ACM/SIGDA and the EDA Industry in 2002. He is on the technical advisory board for The Technology Collaborative. He is a senior member of the IEEE/Computer Society and a member of the Optical Society of America, the Association for Computing Machinery, and the International Society for Optical Engineering. He is a member of the ACM/IEEE Design Automation Conference Executive Committee.Jason Boles received the B.S. degree in computer engineering from the University of Pittsburgh, Pittsburgh, PA, in 2001, where he is currently pursuing the M.S. degree in electrical engineering. His research interests include hardware acceleration techniques for simulation, system level modeling, computer-aided design (CAD), as well as systems-on-chip design and verification. Mr. Boles is a student member of IEEE.Ilya V. Avdeev is currently with ANSYS, Inc (Canonsburg, PA). He received his B.S. and M.S. degrees both in mechanical engineering from St. Petersburg State Polytechnical University (Russia) in 1997 and 1999 respectively. He received his Ph.D. in mechanical engineering from the University of Pittsburgh in 2003. His dissertation was on modeling strongly-coupled MEMS. He has been an inaugural John Swanson Doctoral Fellow and was awarded numerous scholarships and personal grants during his undergraduate and graduate studies. His research interests include mathematical modeling of coupled-field effects, new finite element techniques and methods, design and simulation of MEMS/NEMS, and acoustics. He is a member of ASME and IEEE.Michael R. Lovell is the Associate Dean for Research and an Associate Professor of Industrial and Mechanical Engineering in the School of Engineering at the University of Pittsburgh. Dr. Lovell received his PhD in Mechanical Engineering in 1994 from the University of Pittsburgh. He joined the Mechanical Engineering Department at Pittsburgh in January of 2000 after three years of service as an Assistant Professor at the University of Kentucky and four years of service as a senior development engineer at ANSYS Inc. Professor Lovell is a W. K. Whiteford Endowed Faculty Fellow, has served as the Executive Director of the Swanson Center for Product Innovation since May of 2000, and has been the Director of the Swanson Institute for Technical Excellence since September of 2002. Among his accomplishments, Professor Lovell is a recipient of the NSF CAREER award (1997), the SME Outstanding Young Manufacturing Engineer Award (1999), and won the FAG Outstanding International Publication on Bearings (1998). Dr. Lovell’s primary research interests are in the areas of tribology, advanced computation, and micro and nano systems.Donald M. Chiarulli, Professor of Computer Science. Dr. Chiarulli received his BS degree (Physics, 1976) from Louisiana State University, MSc (Computer Science, 1979) from Virginia Polytechnic Institute, and PhD (Computer Science, 1986) from Louisiana State University. He was an Instructor/Research Associate at LSU from 1979 to 1986, and has been at the University of Pittsburgh since 1986. Dr. Chiarulli’s research interests are in photonic and optoelectronic computing systems architecture. Dr Chiarulli’s research has been recognized with Best Paper Awards at the International Conference on Neural Networks (ICNN-98) and the Design Automation Conference (DAC-00). He is also the co-inventor on three patents relating to computing systems and optoelectronics. He has served on the technical program committees of numerous conferences for both research and education issues. Dr. Chiarulli serves on the editorial board of the Journal of Parallel and Distributed Systems and is a member of the IEEE. SPIE, and OSA.  相似文献   

2.
In this paper, we propose a new combinative scheme to combine with parity check and block coding methods for the reduction of the peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) system. In the proposed schemes, the simulation results shown that Peak-to-Average Power Ratio (PAPR) can be reduced by 3.502 dB. The results of this mapped can be shown that PAPR is reduced. The principle of the scheme is illustrated with the specific example of an eight-carriers signal and its computer simulation results. All simulation results have compare with ideal channel case and AWGN case separately; both of cases are shown the PAPR reduced indeed. Do Horng Guo received his B.S. Degree in Electronic Engineering from National Taiwan Marine Science University, Keelung, Taiwan, in 1983, and M.S. Degree in Computer Communication from Northrop University, Los Angeles, USA, in 1986. He is enrolled in Ph.D program in Graduate Institute of Communication Engineering of Tatung University from 2001. His current interest includes wireless communication system and digital signal processing. Chau-Yun Hsu received his B.S. degree M.S. and Ph.D in Electrical Engineering from Tatung Institute of Technology, Taipei, Taiwan, in 1981, 1983 and 1988, respectively. He was the lecturer in Department of Electrical Engineering of Tatung University from 1983 to 1985. From 1988 to 1997, he served as the Associate professor of Tatung University. Since 1998, he has been the Chair Professor of Graduate Institute of Communication Engineering of Tatung University. Now he is also the chair of department of Electrical Engineering of Tatung University. His current interest includes Wireless Channel Model and Estimation, Machine Learning, Digital Signal Processing and Image Processing.  相似文献   

3.
This paper presents the idea of managing the comprising computations of an application performed by an embedded networked system. An efficient algorithm for exploiting the timing slack of building blocks of the application is proposed. The slack of blocks can be utilized by replacing them with slower but cheaper, i.e. better, modules and by assigning the computations to the proper resources. Thus, our approach manages the comprising computations and system resources and can indirectly assist the realtime scheduling of computations on system resources. This is performed without compromising the timing constraints of the application and can lead to significant improvements in power dissipation, computation accuracy or other metrics of the application domain. Our algorithm is well-suited for arbitrary tree computations. Moreover, it delivers solutions that are desirably close to the optimal solution. Experimental results for a number of object tracking applications implemented in an networked system with embedded computation resources, exhibit a significant amount of slack utilization. Soheil Ghiasi received his B.S. from Sharif University of Technology, Tehran, Iran in 1998, and his M.S. and Ph.D. in Computer Science from the University of California, Los Angeles in 2002 and 2004, respectively. Currently, he is an assistant professor in the department of electrical and computer engineering at the University of California, Davis. His research interests include different aspects of Embedded and Reconfigurable system design. Elaheh Bozorgzadeh received the B.S. degree in Electrical Engineering from Sharif University of Technology, Iran in 1998, M.S. degree in Computer Engineering from Northwestern University in 2000, and Ph.D. degree in Computer Science from the University of California, Los Angeles, in 2003. She is currently as assistant professor in the Department of Computer Science at the University of California, Irvine. Her research interest includes VLSI CAD, design automation for embedded systems, and reconfigurable computing. She is a member of ACM and IEEE. Karlene Nguyen received her B.S. and M.S. from University of California, Los Angeles in 2001 and 2003, respectively. She has been working with Prof. Majid Sarrafzadeh for her M.S. degree. Her research interests include embedded hardware and software design. Majid Sarrafzadeh received his B.S., M.S. and Ph.D. in 1982, 1984, and 1987 respectively from the University of Illinois at Urbana-Champaign in Electrical and Computer Engineering. He joined Northwestern University as an Assistant Professor in 1987. In 2000, he joined the Computer Science Department at University of California at Los Angeles (UCLA). His recent research interests lie in the area of Embedded and Reconfigurable Computing, VLSI CAD, and design and analysis of algorithms. Dr. Sarrafzadeh is a Fellow of IEEE for his contribution to “Theory and Practice of VLSI Design.” He received an NSF Engineering Initiation award, two distinguished paper awards in ICCAD, and the best paper award in DAC. He has served on the technical program committee of numerous conferences in the area of VLSI Design and CAD, including ICCAD, DAC, EDAC, ISPD, FPGA, and DesignCon. He has served as committee chairs of a number of these conferences. He is on the executive committee/steering committee of several conferences such as ICCAD, ISPD, and ISQED. He is the program committee chair of ICCAD 2004. Professor Sarrafzadeh has published approximately 250 papers, is a co-editor of the book “Algorithmic Aspects of VLSI Layout” (1994 by World Scientific), and co-author of the book “An Introduction to VLSI Physical Design” (1996 by McGraw Hill). Dr. Sarrafzadeh is an Associate Editor of ACM Transaction on Design Automation (TODAES) and an Associate Editor of IEEE Transactions on Computer-Aided Design (TCAD) and ACM Transactions on design Automation (TODAES). Dr. Sarrafzadeh has collaborated with many industries in the past fifteen years including IBM, Motorola, and many CAD industries. He is the architect of the physical design subsystem of Monterey Design Systems main product. He is a co-founder of Hier Design, Inc.  相似文献   

4.
In this paper we consider vertical handoff for enterprise-based dual-mode (DM) cellular/WLAN handsets. When the handset roams out of WLAN coverage, the DM's cellular interface is used to maintain the call by anchoring it through an enterprise PSTN gateway/PBX. Soft handoff can be achieved in this case if the gateway supports basic conference bridging, since a new leg of the call can be established to the conference bridge while the existing media stream path is active. Unfortunately this requires that all intra-enterprise calls be routed through the gateway when the call is established. In this paper we consider a SIP based architecture to perform conferenced dual-mode handoff and propose a much more scalable mechanism for short-delay environments, whereby active calls are handed off into the conference bridge prior to the initiation of the vertical handoff. Results are presented which are taken from a dual-mode handset testbed, from analytic models, and from simulations which characterize the scalability of the proposed mechanism. Mohammed Smadi received the B.Eng and Mgmt and M.A.Sc degrees in Computer Engineering from McMaster University in Hamilton, Ontario, Canada. Mohammed received an NSERC doctoral award in 2005 and is currently a Ph.D. student at the Wireless Networking Group at McMaster University. Terence D. Todd received the B.A.Sc, M.A.Sc and Ph.D. degrees in Electrical Engineering from the University of Waterloo, Waterloo, Ontario, Canada. While at Waterloo he spent 3 years as a Research Associate with the Computer Communications Networks Group (CCNG). He is currently a Professor of Electrical and Computer Engineering at McMaster University in Hamilton, Ontario, Canada. Professor Todd spent 1991 on research leave in the Distributed Systems Research Department at AT&T Bell Laboratories in Murray Hill, NJ. He also spent 1998 on research leave at The Olivetti and Oracle Research Laboratory in Cambridge, England. While at ORL he worked on the piconet project which was an early embedded wireless network testbed. Dr. Todd’s research interests include metropolitan/local area networks, wireless communications and the performance analysis of computer communication networks and systems. He is a past Editor of the IEEE/ACM Transactions on Networking and currently holds the NSERC/RIM/CITO Chair on Pico-Cellular Wireless Internet Access Networks. Dr. Todd is a Professional Engineer in the province of Ontario and a member of the IEEE. Vytas Kezys was born in Hamilton, Canada in 1957. He received the B.Eng. degree in Electrical Engineering from McMaster University, Canada, in 1979. From 1979 to 1998, Mr. Kezys was involved in radar and communications research as Principal Research Engineer at the Communications Research Laboratory, McMaster University. While at McMaster, his research activities included array signal processing for low-angle tracking radar, radar signal processing, and smart antennas for wireless communications. Mr. Kezys was founder and President of TalariCom Inc., a start-up company that developed cost effective smart antenna technologies for broadband wireless access applications. Currently, Mr. Kezys is Director of Advanced Products at Research in Motion in Waterloo, Canada. Vahid S. Azhari received his B.S. and M.S. from the Department of Electrical and Computer Engineering, IUST and University of Tehran, Iran, in 2000 and 2003 respectively. His M.S. research focused on designing scheduling algorithms for switch fabrics. He also worked for two years for the Iranian Telecommunication Research Centre on developing software for SDH switches. He is currently pursuing his Ph.D. degree at the Wireless Networking Laboratory, McMaster University, Canada. His main area of research includes handoff management in integrated wireless networks, WLAN deployment techniques, and wireless mesh networks. Dongmei Zhao received the Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada in June 2002. Since July 2002 she has been with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada where she is an assistant professor. Dr. Zhao’s research interests include modeling and performance analysis, quality-of-service provisioning, access control and admission control in wireless cellular networks and integrated cellular and ad hoc networks. Dr. Zhao is a member of the IEEE.  相似文献   

5.
In this paper, a four-quadrant current-mode multiplier based on a new squarer cell is proposed. The multiplier has a simple core, wide input current range with low power consumption, and it can easily be converted to a voltage-mode by using a balanced output transconductor (BOTA) [1]. The proposed four-quadrant current-mode and voltage-mode multipliers were confirmed by using PSPICE simulation and found to have good linearity with wide input dynamic range. For the proposed current-mode multiplier, the static power consumption is 0.671 mW, the maximum power consumption is 0.72 mW, the input current range is ± 60 μ A, the bandwidth is 31 MHz, the input referred noise current is 46 pA/√Hz, and the maximum linearity error is 3.9%. For the proposed voltage-mode multiplier, the static power consumption is 1.6 mW, the maximum power consumption is 1.85 mW, the input voltage range is ± 1V from ± 1.5V supply, the bandwidth is 25.34 MHz, the input referred noise voltage is 0.85 μV/√Hz, and the maximum linearity error is 4.1%. Mohammed A. Hashiesh was born in Elkharga, New Valley, Egypt, in 1979. He received the B.Sc. degree with honors from the Electrical Engineering Department, Cairo University, Fayoum-Campus, Egypt in 2001, and he received the M.Sc. degree in 2004 from the Electronics and Communication Engineering Department, Cairo University, Egypt. He is currently a Teacher Assistant at the Electrical Engineering Department, Cairo University, Fayoum-Campus. His research interests include analog CMOS integrated circuit design and signal processing, and digitally programmable CMOS analog building blocks. Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the B.Sc. degree with honors, the M.Sc. degree and the Ph.D. degree from the Electronics and Communications Department, Cairo University—Egypt in 1994, 1996 and 1999 respectively. He is currently an Assistant Professor at the Electrical Engineering Department, Cairo University, Fayoum-Campus. He has published more than 50 papers. His research and teaching interests are in circuit theory, fully integrated analog filters, high frequency transconductance amplifiers, low voltage analog CMOS circuit design, current-mode analog signal processing and mixed analog/digital programmable analog blocks. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997–September 2003, Dr Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo. He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr Soliman is a member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Presently Dr. Soliman is Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters).  相似文献   

6.
This paper presents DARC (Directional Adaptive Range Control), a range control mechanism using directional antennas to be implemented across multiple layers. DARC uses directional reception for range control rather than directional transmission in order to achieve both range extension and high spatial reuse. It adaptively controls the communication range by estimating dynamically changing local network density based on the transmission activities around each network node. The experimental results using simulation with detailed physical layer, IEEE 802.11 DCF MAC, and AODV protocol models have shown the successful adaptation of communication range with DARC for varied network densities and traffic loads. DARC improves the packet delivery ratio by a factor of 9 at the maximum for sparse networks while it maintains the increased network capacity for dense networks. Further, as each node adaptively changes the communication range, the network delivers up to 20% more packets with DARC compared to any fixed range configurations.Mineo Takai is a Principal Development Engineer in the Computer Science Department at University of California, Los Angeles. He received his B.S., M.S. and Ph.D. degrees, all in electrical engineering, from Waseda University, Tokyo, Japan, in 1992, 1994 and 1997 respectively.Dr. Takai’s research interests include parallel and distributed computing, mobile computing and networking, and modeling and simulation of networked systems. He is a member of the ACM, the IEEE and the IEICE.Junlan Zhou received her B.S in Computer Science from Huazhong University of Science and Technology in 1998, her M.Eng in Computer Engineering from Nanyang Technological University in 2001 and her M.S in Computer Science from University of California, Los Angeles in 2003. She is currently a Ph.D candidate in the Computer Science Department at University of California, Los Angeles. Her research interests include modeling and simulation of wireless networks, protocol design and analysis of wireless networks, and broad areas of distributed computing.Rajive Bagrodia is a Professor of Computer Science at UCLA. He obtained a Bachelor of Technology in electrical engineering from the Indian Institute of Technology, Bombay and a Ph.D. in Computer Science from the University of Texas at Austin. Professor Bagrodia’s research interests include~wireless networks, performance modeling and~simulation, and nomadic computing. He has published over a hundred research papers on the preceding topics. The research has been funded by a variety of government and industrial sponsors including the National Science Foundation, Office of Naval Research, and the Defense Advanced Research Projects Agency. He is an associate editor of the ACM Transactions on Modeling and Computer Systems (TOMACS).  相似文献   

7.
The packet error rate between two piconets depends on the temporal alignment of their packets and the spectral alignment of the intervals from which the frequencies in their hop sequence are chosen. The relationship between two randomly paired piconets is one of over 828 billion possible relationships. We define these relationships and derive an expression for determining the packet error rate for a specific pair of piconets using single-slot packets. We derive the probability mass function for the packet error rate and extend it to provide the possible packet error rates for an arbitrary number of neighboring piconets. We also derive a probability mass function for the goodput of a piconet with a neighboring piconet. The probability mass functions for the packet error rate is bimodal, meaning the expected value of the goodput or packet error rate is not a good choice for piconet performance analysis. Brian S. Peterson is Chief of the Advanced MASINT Research and Requirements Branch at the National Air and Space Intelligence Center, Wright-Patterson AFB, Ohio. He received the B.S.E.E degree in 1991 from the United States Air Force Academy, an M.S. degree in Systems Engineering in 1995 from, and an M.S.E.E. degree from Florida State University in 1998. He received his Ph.D. degree in Electrical Engineering in 2005 from the Air Force Institute of Technology. Dr. Peterson's research interests include computer communication protocols and wireless networking. Dr. Peterson is a member of the IEEE. Rusty O. Baldwin is an Associate Professor of Computer Engineering in the Department of Electrical and Computer Engineering at the Air Force Institute of Technology, Wright-Patterson AFB, Ohio. He received the B.S.E.E degree (with honors) in 1987 from the New Mexico State University and the M.S. degree in Computer Engineering in 1992 from AFIT. He received his Ph.D. degree in Electrical Engineering in 1999 from Virginia Polytechnic Institute and State University. Dr. Baldwin's research interests include computer communication protocols, information warfare, and wireless networking. Dr. Baldwin is a Senior member of the IEEE. Richard A. Raines is an Associate Professor of Electrical Engineering in the Department of Electrical and Computer Engineering at the Air Force Institute of Technology (AFIT), Wright-Patterson AFB, Ohio. He received the B.S.E.E degree (with honors) in 1985 from the Florida State University and the M.S. degree in Computer Engineering in 1987 from AFIT. He received his Ph.D. degree in Electrical Engineering in 1994 from Virginia Polytechnic Institute and State University. Dr. Raines' research interests include computer communication protocols, information security, and wireless networking. Dr. Raines is a Senior member of the IEEE.  相似文献   

8.
In this paper, a VHDL implementation of a decomposition unit based on Mallat's fast Wavelet Transform, which utilizes a two-channel subband coder, is described. The units were simulated, synthesized, and optimized using Mentor? design tools. The final design was verified with VHDL test benches and Matlab image processing tools. Results of the decomposition for color images validate the design. Utilizing a clock frequency of 25 MHz, a time period of 45 ms was estimated for the decomposition process of a 640 × 480 color image, which makes it feasible for real time video compression. The size of the layout was found to be within 2.5 × 2.5 mm, which suggests a 40 pin-package tiny frame. Paul Salama received the B.Sc. in Electrical Engineering (First Class Honors) from the University of Khartoum in 1991, and the M.S.E.E. and the Ph.D. degrees from Purdue University in 1993 and 1999, respectively. He is currently an Associate Professor at the Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indiana University Purdue University Indianapolis (IUPUI). His research interests include image and video compression, image processing, Transmission of compressed Video, Ill posed problems, and medical imaging. Dr. Salama is a member of SPIE, Tau Beta Pi, and Eta Kappa Nu. Maher E. Rizkalla received his Ph.D. in Electrical Engineering from Case Western Reserve University, Cleveland, Ohio in 1985. From Jan. 1985 to Sep. 1986, he was a Visiting Scientist at Argonne National Laboratory, Argonne, IL while being a Visiting Assistant Professor at Purdue University Calumet. Since 1986 he has been with the Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indiana University Purdue University Indianapolis (IUPUI), where he is Professor of Electrical and Computer Engineering. His research interests include solid-state electronics, VLSI design as applied to DSP, electromagnetics, and engineering education. He has published over 100 papers in these areas. He received the outstanding teaching awards in the ECE Department and in the School five times and was the Professor of the Year at Purdue Calumet in 1986. He is the recipient of one NSF grant, and two FIPSE grants, and is COPI of a number of industrial and equipment grants. Dr. Rizkalla is a Senior Member, IEEE, and a Professional Engineer (PE) registered in the State of Indiana. Michael Eckbauer received the M.S.E.E. degree in Electrical Engineering from Indiana University Purdue University Indianapolis (IUPUI) in December 2002. He is currently with GE Medical Systems in Waukesha, Wisconsin.  相似文献   

9.
This paper presents a novel CMOS low-voltage and low-power positive second-generation current conveyor (CCII+). The proposed CCII+ uses two n-channel differential pairs instead of the complementary differential pairs; i.e. (n-channel and p-channel), to realize the input stage. This solution allows almost a rail-to-rail input and output operation; also it reduces the number of current mirrors needed in the input stage. The CCII+ is operating at supply voltages of ±0.75 V with a total standby current of 133 μA. The application of the proposed CCII+ to realize a MOS-C second order maximally flat low-pass filter is given. PSpice simulation results for the proposed CCII+ and its application are given. Ahmed H. Madian was born in Jeddah, Saudi Arabia in 1975. He received the B.Sc. degree with honors, and the M.Sc. degree in electronics and communications from Cairo University, Cairo, Egypt, in 1997, and 2001 respectively. He is currently a Research Assistant in the Electronics Engineering Department, Micro-Electronics Design Center, Egyptian Atomic Energy Authority, Cairo, Egypt. His research interests are in circuit theory; low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed/digital applications on filed programmable gate arrays. Soliman A. Mahmoud was born in Cairo, Egypt, in 1971. He received the BSc degree with honors in 1994, the MSc degree in 1996, and the PhD degree in 1999, all from the Electronics and Communications Department, Cairo University, Egypt. He is currently an Associate Professor at the Electrical Engineering Department, Fayoum University, Egypt. He is currently also a visiting Associate Professor at the Electrical and Electronics Engineering Department, German University in Cairo, Egypt. In 2005, He was decorated with the Science Prize in Advanced Engineering Technology from the Academy of Scientific Research and technology. His research and teaching interests are in circuit theory, fully-integrated analog filters, high-frequency transconductance amplifiers, low-voltage analog CMOS circuit design, current-mode analog signal processing, and mixed analog/digital programmable analog blocks. Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964,the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA., U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering. He is currently Professor Electronics and Communications Engineering Department, Cairo University, Egypt. From September 1997-September 2003, Dr Soliman served as Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985-1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987-1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo.He was a visiting scholar at Bochum University, Germany (Summer 1985) and with the Technical University of Wien, Austria (Summer 1987). In November 2005, Dr Soliman gave a lecture at Nanyang Technological University, Singapore.Dr Soliman was also invited to visit Taiwan and gave lectures at Chung Yuan Christian University and at National Central University of Taiwan. In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr Soliman is a Member of the Editorial Board of the IEE Proceedings Circuits, Devices and Systems. Dr Soliman is a Member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Dr Soliman served as Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters) from December 2001 to December 2003 and is Associate Editor of the Journal of Circuits, Systems and Signal Processing from January 2004-Now.  相似文献   

10.
There has been much recent attention on using wireless relay networks to forward data from mobile nodes to a base station. This network architecture is motivated by performance improvements obtained by leveraging the highest quality links to a base station for data transfer. With the advent of agile radios it is possible to improve the performance of relay networks through intelligent frequency assignments. First, it is beneficial if the links of the relay network are orthogonal with respect to each other so that simultaneous transmission on all links is possible. Second, diversity can be added to hops in the relay network to reduce error rates. In this paper we present algorithms for forming such relay networks dynamically. The formation algorithms support intelligent frequency assignments and diversity setup. Our results show that algorithms that order the sequence in which nodes join a relay network carefully, achieve the highest amount of diversity and hence best performance. This research is supported in part by NSF grant CNS-0508114. JaeSheung Shin received the B.S. and M.S. degree in Computer Science and Engineering from DongGuk University, Korea, in 1991 and 1993, respectively. He is currently working toward the Ph.D. degree in Computer Science and Engineering at the Pennsylvania State University, University Park. He is a research assistant at the Networking and Security Research Center (NSRC). Prior to joining Pennsylvania State University, he was with Electronics and Telecommunications Research Institute (ETRI), Korea, since 1993. He worked on development of 2G and 3G wireless cellular core network elements. His research interests include mobility management and signaling for wireless cellular and routing and resource allocation for multi-radio multi-hop wireless cellular networks. Kyounghwan Lee received the B.S. degree in Electrical and Electronics Engineering from University of Seoul, Seoul, Korea, in 2000, and the M.S. degree in Information and Communication Engineering from Gwangju Institute of Science and Technology, Gwangju, Korea, in 2002. He is currently a Ph.D candidate at the Electrical Engineering department at the Pennsylvania State University and a research assistant at the Wireless Communications and Networking Laboratory (WCAN@PSU). His research interests include wireless communication theory and relay networks. E-mail: kxl251@psu.edu Aylin Yener received the B.S. degrees in Electrical and Electronics Engineering, and in Physics, from Bogazici University, Istanbul, Turkey, in 1991, and the M.S. and Ph.D. degrees in Electrical and Computer Engineering from Rutgers University, NJ, in 1994 and 2000, respectively. During her Ph.D. studies, she was with Wireless Information Network Laboratory (WINLAB) in the Department of Electrical and Computer Engineering at Rutgers University, NJ. Between fall 2000 and fall 2001, she was with the Electrical Engineering and Computer Science Department at Lehigh University, PA, where she was a P.C. Rossin assistant professor. Currently, she is with the Electrical Engineering department at the Pennsylvania State University, University Park, PA, as an assistant professor. Dr. Yener is a recipient of the NSF CAREER award in 2003. She is an associate editor of the IEEE Transactions on Wireless Communications. Dr. Yener’s research interests include performance enhancement of multiuser systems, wireless communication theory and wireless networking. Thomas F. La Porta received his B.S.E.E. and M.S.E.E. degrees from The Cooper Union, New York, NY, and his Ph.D. degree in Electrical Engineering from Columbia University, New York, NY. He joined the Computer Science and Engineering Department at Penn State in 2002 as a Full Professor. He is the Director of the Networking Research Center at Penn State. Prior to joining Penn State, Dr. La Porta was with Bell Laboratories since 1986. He was the Director of the Mobile Networking Research Department in Bell Laboratories, Lucent Technologies. He is an IEEE Fellow and Bell Labs Fellow. Dr. La Porta was the founding Editor-in-Chief of the IEEE Transactions on Mobile Computing. He has published over 50 technical papers and holds 25 patents.  相似文献   

11.
This paper addresses a problem associated with interleaved ADC systems from the digital signal processing algorithm design perspective. The output streams of an interleaved ADC system are inherently in parallel format. It would be nice if DSP algorithms can be designed to take advantage of the inherently parallel signal streams in the interleaved ADC system without the need of a high speed parallel-to-serial multiplexer. Frequency response of a parallel filter bank is derived. It is found that the overall frequency response is the average of each individual interpolated channel filter plus the aliasing components. The aliasing components come from the deviation of each individual channel from the average response.Results are applied to characterize the gain mismatch of ADC arrays. Sinusoidal response is also investigated. The results can be used to characterize the frequency response mismatch of ADC arrays.Yih-Chyun Jenq received the B.S.E. degree from National Taiwan University, Taipei, Taiwan in 1971, and the M.S.E., M.A., and Ph.D. degrees in Electrical Engineering from Princeton University, Princeton, NJ in 1974, 1975, and 1976, respectively. From 1976 to 1980, he was Assistant Professor of Electrical Engineering at the State University of New York at Stony Brook, Stony Brook, NY. From 1980 to 1984, he was a Member of Technical Staff at AT&T Bell Laboratories, Homdel, NJ. From 1984 to 1990, he was a Research Manager and Principal Engineer at Tektronix Laboratories, Beaverton, OR. In September 1990, he joined the Faculty of the Department of Electrical and Computer Engineering at Portland State University, Portland, OR where he is currently a Full Professor. From 1987 to 1989, Dr. Jenq served as Associate Editor of the IEEE Transactions on Circuits and Systems in charge of Digital Signal Processing. He was the recipient of the 1988 Andrew R. Chi Prize Paper Award of the IEEE Instrumentation and Measurement Society. He holds ten (10) U.S. patents. Dr. Jenq is a fellow of the IEEE.  相似文献   

12.
This paper presents a technique which is based on pattern recognition techniques, in order to estimate Mobile Terminal (MT) velocity. The proposed technique applies on received signal strength (RSS) measurements and more precisely on information extracted from Iub air interface, in wIDeband code-division multiple access (WCDMA) systems for transmission control purposes. Pattern recognition is performed by HIDden Markov Model (HMM), which is trained with downlink signal strength measurements for specific areas, employing Clustering LARge Applications (CLARA) like a clustering method. Accurate results from a single probe vehicle show the potential of the method, when applied to large scale of MTs. Theodore S. Stamoulakatos is a Senior Research Associate with the Department of Electrical and Computer Engineering at National Technical University of Athens (NTUA). He received his B.Sc. in Mathematics from University of the Aegean, Greece, in 1997, and the M.Sc. in Computer Applications from Dublin City University, Ireland, in 1999 with scholarship from the Irish Ministry of Education. On April ’05 he received his Ph.D. degree from the Department of Electrical Engineering and Computer Science of the National Technical University of Athens. He has been lecturing in DCU various courses including Algorithms & Data Structures, Computer Systems, and Advanced Network Management to both undergraduate and postgraduate students. During his research in NTUA, he has been actively involved in many European and National projects that match his research interests. Both his academic as well as his industrial experience (four years in OTEnet S.A.) allow him to publish several papers in journals and international conferences, which are in the fields of Mobile and Personal Communication Networks, Active Networks, Location Based Services as well as Network and Service Management. Dr. Stamoulakatos is a member of the IEEE. Antonis E. Markopoulos obtained his degree in Informatics and Telecommunications Engineering from University of Athens, Greece in 2000. During his studies he participated in various research projects dealing with the management of fixed and wireless networks. He has also industrial experience for 2 years in INTRASOFT International S.A participating in several projects, national and European. He received his PhD in the field of Cellular and Wireless Communication from the National Technical University of Athens in 2005, where he is working as a Senior Research Engineer in the Telecommunication Laboratory. He has published several papers in journals, international conferences and book chapters. His research interests are in the fields of cellular and wireless networks of present and future generation (4G, WLAN/WPAN, WiMAX) and more specific in the areas of radio resource management and security. He has been mainly involved in many European (IST-CELLO, IST-PACWOMAN, IST-MAGNET, a.o) and National (Greek IST, GGRT) projects. Dr Markopoulos is a member of the IEEE and of the Greek Association of Mechanical and Electrical Engineers. Miltiades E. Anagnostou was born in Athens, Greece, in 1958. He received the Electrical Engineer’s Diploma from the National Technical University of Athens (NTUA) in 1981. In 1987 he received his PhD in the area of computer networks. Since 1989 he has been teaching at the Electrical and Computer Engineering School of NTUA, where he is currently a Full Professor. He teaches courses on modern telecommunications, computer networks, formal specification, stochastic processes, and network algorithms. His research spans several fields, including broadband networks, mobile and personal communications, service engineering, mobile agents, pervasive computing, network algorithms and queuing systems. He is a member of the IEEE and the ACM. Michael E. Theologou received the degree in Electrical Engineering from Patras University and his Ph.D. degree from the Department of Electrical Engineering and Computer Science of the National Technical University of Athens. Currently he is a Professor at National Technical University of Athens, Department of Electrical and Computer Engineering conducting teaching and research in the wider area of Telecommunication Networks and Systems. His research interests are in the fields of Mobile and Personal Communication Networks, Computer Networks, Quality of Service. He has many publications in the above areas.  相似文献   

13.
We present the fixed-point analysis and VLSI realization of a maximum-power blind beamforming algorithm. This algorithm consists of the computation of a correlation matrix and its dominant eigenvector, and we propose that the latter be accomplished by the power method. After analyzing the numerical stability of the power method, we derive a division-free form of the algorithm. Based on a block-Toeplitz assumption, we design an FIR filter based system to realize both the correlation computation and the power method. Our ring processor, which is optimized to implement digital filters, is used as the core of the architecture. A special technique for dynamically switching filter inputs is shown to double the system throughput. VLSI design is discussed in detail and chip fabrication results are presented.Fan Xu received the B.S. and M.S. degrees in electronics engineering from Tsinghua University, Beijing, China, in 1993 and 1996, respectively, and the Ph.D. degree in electrical engineering from the University of California, Los Angeles, in 2001. His Ph.D. research focused on algorithm design and analysis for digital signal processors and eigenvector estimation architectures.In 1997, he held an internship at Bell Labs, Lucent Technologies, Holmdel, NJ, where he worked on equalization algorithms for cellular systems. He joined Broadcom Co., Irvine, CA, in 2001. His research interests include VLSI signal processing, customized digital signal processor, efficient hardware architectures for adaptive signal processing and high-performance VLSI design.Guichang Zhong received the B.S. degree from Xi an Jiaotong University, China, in 1996 and the M.S. degree from the Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China, in 2000, both in electrical engineering. He is currently working toward the Ph.D. degree in integrated circuits and systems at the University of California, Los Angeles.His present research interests are in high-performance VLSI digital signal processors design, with an emphasis on reconfigurable and energy-efficient architecture.Alan N. Willson, Jr. received the B.E.E. degree from the Georgia Institute of Technology, Atlanta, in 1961, and the M.S. and Ph.D. degrees from Syracuse University, Syracuse, NY, in 1965 and 1967 respectively.From 1961 to 1964 he was with IBM, Poughkeepsie, NY. He was an Instructor in electrical engineering at Syracuse University from 1965 to 1967. From 1967 to 1973 he was a Member of the Technical Staff at Bell Laboratories, Murray Hill, NJ. Since 1973, he has been on the faculty of the University of California, Los Angeles (UCLA), where he is Professor of Engineering and Applied Science in the Electrical Engineering Department. In addition, he served the UCLA School of Engineering and Applied Science as Assistant Dean for Graduate Studies from 1977 through 1981 and as Associate Dean of Engineering from 1987 through 2001. He has been engaged in research concerning computer-aided circuit analysis and design, the stability of distributed circuits, properties of nonlinear networks, theory of active circuits, digital signal processing, analog circuit fault diagnosis, and integrated circuits for signal processing. He is editor of Nonlinear Networks: Theory and Analysis (New York: IEEE Press, 1974). In 1991 he founded Pentomics, Inc.Dr. Willson is a member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, the Society for Industrial and Applied Mathematics, and the American Society for Engineering Education. From 1977 to 1979, he served as Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. In 1980, he was General Chairman of the 14th Asilomar Conference on Circuits, Systems, and Computers. During 1984, he served as President of the IEEE Circuits and Systems Society. He was the recipient of the 1978 and 1994 Guillemin-Cauer Awards of the IEEE Circuits and Systems Society, the 1982 GeorgeWestinghouse Award of the American Society for Engineering Education, the 1982 Distinguished Faculty Award of the UCLA Engineering Alumni Association, the 1984 Myril B. Reed Best Paper Award of the Midwest Symposium on Circuits and Systems, the 1985 and 1994 W.R.G. Baker Awards of the IEEE, the 2000 Technical Achievement Award and the 2003 Mac Van Valkenburg Award of the IEEE Circuits and Systems Society.  相似文献   

14.
This paper demonstrates a technique for controlling the electron emission of an array of field emitting vertically aligned carbon nanofibers (VACNFs). An array of carbon nanofibers (CNF) is to be used as the source of electron beams for lithography purposes. This tool is intended to replace the mask in the conventional photolithography process by controlling their charge emission using the “Dose Control Circuitry” (DCC). The large variation in the charge emitted between CNFs grown in identical conditions forced the controller design to be based on fixed dose rather than on fixed time. Compact digital control logic has been designed for controlling the operation of DCC. This system has been implemented in a 0.5 μm CMOS process. Chandra Sekhar A. Durisety received his B.E. (Hons.) Instrumentation from Birla Institute of Technology and Sciences, Pilani, India in 1997 and his M.S in Electrical Engineering from University of Tennessee, Knoxville in 2002. Since 2003, he has been working towards his Ph.D degree also in Electrical Engineering at Integrated Circuits and Systems Lab (ICASL), University of Tennessee, Knoxville. He joined Wipro Infotech Ltd, Global R & D, Bangalore, India in 1997, where he designed FPGA based IPs for network routers. Since 1999, he was involved in the PCI bridge implementation at CMOS chips Inc, Santa Clara, CA, and the test bench development for Sony’s MP3 player, while at Toshiba America Electronic Components Inc., San Jose, CA. His research interests include multi-stage amplifiers, data converters, circuits in SOI and Floating Gate Devices. Rajagopal Vijayaraghavan received the B.E degree in electronics and communication engineering from Madras University in 1998 and the M.S degree in electrical engineering from the University of Texas, Dallas in 2001.He is currently working towards the Ph.D degree in electrical engineering at the University of Tennessee. His research interest is in the area of CMOS Analog and RF IC design. His current research focuses on LNAs and VCOs using SOI based MESFET devices. Lakshmipriya Seshan was born in Trivandrum, India on April 30, 1979. She received her B.tech in Electronincs & Communication Engg from Kerala University, India in June 2000 and M.S in Electrical Engg from University of Tennessee in 2004. In 2004, she joined Intel Corporation as an Analog Engineer, where she is engaged in the design of low power, high speed analog circuits for various I/O interface topologies. Syed K. Islam received his B.Sc. in Electrical and Electronic Engineering from Bangladesh University of Engineering and Technology (BUET) and M.S. and Ph.D. in Electrical and Systems Engineering from the University of Connecticut. He is presently an Associate Professor in the Department of Electrical and Computer Engineering at the University of Tennessee, Knoxville. Dr. Islam is leading the research efforts of the Analog VLSI and Devices Laboratory at the University of Tennessee. His research interests are design, modeling and fabrication of microelectronic/optoelectronic devices, molecular scale electronics and nanotechnology, biomicroelectronics and monolithic sensors. Dr. Islam has numerous publications in technical journals and conference proceedings in the areas of semiconductors devices and circuits. Benjamin J. Blalock received his B.S. degree in electrical engineering from The University of Tennessee, Knoxville, in 1991 and the M.S. and Ph.D. degrees, also in electrical engineering, from the Georgia Institute of Technology, Atlanta, in 1993 and 1996 respectively. He is currently an Assistant Professor in the Department of Electrical and Computer Engineering at The University of Tennessee where he directs the Integrated Circuits and Systems Laboratory (ICASL). His research focus there includes analog IC design for extreme environments (both wide temperature and radiation immune), multi-gate transistors and circuits on SOI, body-driven circuit techniques for ultra low-voltage analog, mixed-signal/mixed-voltage circuit design for systems-on-a-chip, and bio-microelectronics. Dr. Blalock has co-authored over 60 published refereed papers. He has also worked as an analog IC design consultant for Cypress Semiconductor Corp. and Concorde Microsystems Inc.  相似文献   

15.
In this paper a new realization of the differential input balanced output current opamp is proposed, operating with ±1.5 V supplies. Its architecture is based on the use of current inverters to sense the input currents while providing a very low input resistance, 23 Ω. The opamp provides a maximum output swing of 700 μA, with an input offset current of 3.5 nA. The differential gain achieved is 65.5 dB, and the differential structure adopted in the design provided a high CMRR, 89.5 dB, the proposed circuit is compared to other realizations with single and differential inputs. The applications of the current opamp are exploited some new applications are presented such as: MOSFET-C integrators, full non-linearity cancellation for MOS transistors, and finally a digitally tuned current-mode variable gain amplifier, which has a gain tuning range of 25 dB with a 0.05 dB step.Ahmed M. Soliman was born in Cairo Egypt, on November 22, 1943. He received the B.Sc. degree with honors from Cairo University, Cairo, Egypt, in 1964, the M.S. and Ph.D. degrees from the University of Pittsburgh, Pittsburgh, PA, U.S.A., in 1967 and 1970, respectively, all in Electrical Engineering.He is currently Professor and Chairman Electronics and Communications Engineering Department, Cairo University, Egypt. From 1985–1987, Dr. Soliman served as Professor and Chairman of the Electrical Engineering Department, United Arab Emirates University, and from 1987–1991 he was the Associate Dean of Engineering at the same University. He has held visiting academic appointments at San Francisco State University, Florida Atlantic University and the American University in Cairo.He was a visiting scholar at Bochum University, Germany (Summer, 1985) and with the Technical University of Wien, Austria (Summer, 1987).In 1977, Dr. Soliman was decorated with the First Class Science Medal, from the President of Egypt, for his services to the field of Engineering and Engineering Education. Dr. Soliman is a member of the Editorial Board of Analog Integrated Circuits and Signal Processing. Presently Dr. Soliman is Associate Editor of the IEEE Transactions on Circuits and Systems I (Analog Circuits and Filters).  相似文献   

16.
The major problem of fault diagnosis with a fault dictionary is the enormous amount of data. The technique used to manage this data can have a significant effect on the outcome of the fault diagnosis procedure. If information is removed from a fault dictionary in order to reduce the size of the dictionary, its ability to diagnose stuck-at faults and unmodeled faults may be severely debased. Therefore, we focus on methods for producing a dictionary that is both small and lossless-compacted. We propose an efficient dictionary for maximum diagnosis, which is called SD-Dictionary. This dictionary consists of a static sub-dictionary and a dynamic sub-dictionary in order to make a smaller dictionary while maintaining the critical information needed for the diagnostic ability. Experimental results on ISCAS’ 85, ISCAS’ 89 and ITC’ 99 benchmark circuits show that the size of the proposed dictionary is substantially reduced, while the dictionary retains most or all of the diagnostic capability of the full dictionary. This work was supported by the “System IC 2010” project of Korea Ministry of Science and Technology and Ministry of Commerce, Industry and Energy. Editor: Y. Takamatsu Sunghoon Chun received the B.S. degrees in Electrical and Electronic Engineering from Yonsei University, Seoul, Korea, in 2002. He was a Reseach Engineer with ASIC Research Center in Yonsei University. He researched for test methodologies for SoC. He received the M.S. degrees in Electrical and Electronic Engineering from Yonsei University in 2005. He is currently working toward Ph.D. degree in Electrical and Electronic Engineering at Yonsei University. His area of interests includes SoC testing, delay testing, fault diagnosis, functional testing for processor based system and test methodologies for signal integrity faults. Sangwook Kim received the B.S., and M.S. degrees in Electrical and Electronic Engineering from Yonsei University, Seoul, Korea, in 1999, and 2001, respectively. He researched for Digital Signal Processor design and fault diagnosis of VLSI. He is a Research Engineer with SoC Design Group of System IC Division in LG Electronics, Inc. He is currently interested in SoC design for HDTV and design verification. Hong-Sik Kim was born in Seoul, Korea, on April 4, 1973. He received the B.S., M.S. and Ph.D. degrees in Electrical and Electronic Engineering from Yonsei University, Seoul, Korea, in 1977, 1999, and 2004, respectively. He was a Post-Doctorial Fellow with the Institute of Virginia Technology. He is currently working on System LSI Group in the Samsung Electronics. His current research interest includes design-for-testability, built-in self tests and fault diagnosis. Sungho Kang received the B.S. degree from Seoul National University, Seoul, Korea, and the M.S. and Ph.D. degrees in electrical and computer engineering from The University of Texas at Austin. He was a Post-Doctorial Fellow with the University of Texas at Austin, a Research Scientist with the Schlumberger Laboratory for Computer Science, Schlumberger Inc., and a Senior Staff Engineer with the Semiconductor Systems Design Technology, Motorola Inc. Since 1994, he has been an Associate Professor with the Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea. His current research interests include VLSI design, VLSI CAD and VLSI testing and design for testability.  相似文献   

17.
Future mobile handsets will often be multi-mode, containing both wireless LAN (WLAN) and cellular air interfaces. When such a device is within a WLAN it can be served by the WLAN resources. As it moves out of the WLAN coverage area, it has to be served by the cellular system. Therefore, handoffs are necessary between the WLAN and the cellular system. In loosely coupled WLAN/Cellular systems the system administrator of the WLAN is different from the cellular one. Therefore, in these situations, reducing the dropping probability based on classical methods, such as using some reserved guard channels, is difficult. In this paper, we propose to use ad hoc relaying during the vertical handoff process in a hybrid WLAN/Cellular system. The method that we propose in this paper improves the dropping probability regardless of the number of reserved channels. Therefore, this method could be employed in loosely coupled hybrid systems. Both analytical reasoning and simulation results support the effectiveness of the proposed method. Pejman Khadivi received the BS and MS degrees in computer engineering (Hardware and Computer Systems Architecture) in 1998 and 2000, respectively from Isfahan University of Technology, where he is currently working toward his Ph.D. During the 2003/2004 academic year, he was a Visiting Researcher with the Electrical and Computer Engineering Department, McMaster University, ON, Canada. Different aspects of computer architecture and networking are Mr. Khadivi’s research interests specially, adhoc networks, QoS routing and seamless handoff in hybrid mobile networks. Shadrokh Samavi received the B.S. degrees in industrial technology and electrical engineering from the California State University, Fresno, in 1980 and 1982, respectively, the M.S. degree from the University of Memphis, Memphis, TN, in 1985, and the Ph.D. degree in electrical engineering from Mississippi State University, Mississippi State, in 1989. In 1995, he joined the Electrical and Computer Engineering Department, Isfahan University of Technology, Isfahan, Iran, where he was an Associative Professor. During the 2002/2003 academic year, he was a Visiting Professor with the Electrical and Computer Engineering Department, McMaster University, Hamilton, ON, Canada. His current research interests are implementation and optimization of image-processing algorithms and area-performance tradeoffs in computational circuits. Dr. Samavi is a Registered Professional Engineer (P.E.), USA, and is a member of Eta Kappa Nu, Tau Beta Pi, and the National Association of Industrial Technologists (NAIT). Hossein Saidi received the B.S. and M.S. degrees in electrical engineering (Electronics and communication Eng.) from Isfahan University of Technology (IUT), in 1986 and 1989, respectively, and the Ph.D. degree in electrical engineering from the Washington University in St. Louis, MO. in 1994.From 1994 to 1995, he was a research associates at Washington Univ. St. Louis, and in 1995 he joined the Electrical and Computer Engineering of IUT, where he is an Associate Professor. His Research interest includes ATM, high speed networking, QoS guarantees, routing, algorithms and information theory. Terence D. Todd received the B.A.Sc, M.A.Sc and Ph.D degrees in Electrical Engineering from the University of Waterloo, Waterloo, Ontario, Canada. While at Waterloo he spent 3 years as a Research Associate with the Computer Communications Networks Group (CCNG). He is currently a Professor of Electrical and Computer Engineering at McMaster University in Hamilton, Ontario, Canada.Professor Todd spent 1991 on research leave in the Distributed Systems Research Department at AT&T Bell Laboratories in Murray Hill, NJ. He also spent 1998 on research leave at The Olivetti and Oracle Research Laboratory in Cambridge, England. While at ORL he worked on the piconet project which was an early embedded wireless network testbed.Dr. Todd’s research interests include metropolitan/local area networks, wireless communications and the performance analysis of computer communication networks and systems. He currently holds the NSERC/RIM/CITO Industrial Research Chair on Pico-Cellular Wireless Internet Access Networks. Dr. Todd is a Professional Engineer in the province of Ontario and a member of the IEEE. Dongmei Zhao received the Ph.D degree in Electrical and Computer Engineering from the University of Waterloo, Waterloo, Ontario, Canada in June 2002. Since July 2002 she has been with the Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada where she is an assistant professor. Dr. Zhao’s research interests include modeling and performance analysis, quality-of-service provisioning, access control and admission control in wireless cellular networks and integrated cellular and ad hoc networks. Dr. Zhao is a member of the IEEE.  相似文献   

18.
The frequency channelized receiver enables the use of practical analog-to-digital converters (ADC) to digitize ultra-wideband (UWB) signals. The design issues of the analog and digital baseband processor for the channelized receiver in a UWB transmitted reference (TR) system are investigated. In the analog part, the receiver performance is shown to be weakly dependent on the analog filter bandwidth, the filter order, and the ADC oversampling ratio assuming white input noise. In the digital part, the coarse acquisition performance is shown to be significantly better in a channelized receiver than in a fullband receiver. The implementation issues for fine synchronization and correlation window length are also studied. Lei Feng received the B.S. and M.S. degree in electrical engineering from Peking University, Beijing, in 1997 and 2000, respectively. He is currently working toward the Ph.D degree in electrical engineering at University of Southern California, Los Angeles, CA. His doctoral research focuses on the design of wideband communication transceivers for wireless and wireline applications. Won Namgoong received the BS degree in Electrical Engineering and Computer Science from the University of California at Berkeley in 1993, and the MS and Ph.D. degrees in Electrical Engineerig from Stanford University in 1995 and 1999, respectively. In 1999, he joined the faculty of the Electrical Engineering Department at the University of Southern California, where he is an Assistant Professor. His current research areas include wireless/wireline communication systems, signal processing systems, RF circuits, and low-power/high-speed circuits. In 2002, he received the National Science Foundation (NSF) CAREER Award.  相似文献   

19.
This paper presents an efficient Bayesian blind multiuser receiver for long code multipath CDMA systems. The proposed receiver employs the adaptive sampling method for the Bayesian inference procedure to estimate the data symbols and multipath parameters. Compared to the other reported Bayesian Monte Carlo receivers for long code multipath CDMA systems, the proposed one achieves a faster convergence and a lower computational complexity to attain comparable performance. Simulation results are presented to demonstrate the effectiveness of the proposed Bayesian blind multiuser receiver. Qian Yu received the B. S. and M. S. degree in control theory and applications in 1997 and 2000, respectively, from Northwestern Polytechnical University (NWPU), Xian, China. She is currently working toward the Ph.D. degree in the Division of Information Engineering of EEE, Nanyang Technology University, Singapore. Her general research interests are in the area of signal processing for wireless communication systems. Dr Guoan Bi received a B.Sc degree in Radio communications, Dalian University of Technology, PRC, 1982, M.Sc degree in Telecommunication Systems and Ph.D degree in Electronics Systems, Essex University, UK, 1985 and 1988, respectively. Since 1991, he has been with the school of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. His current research interests include DSP algorithms and hardware structures and digital signal processing for communications. Dr. Liren Zhang is currently an Associate Professor in the School of Electrical and Electronic Engineering, Nanyang Technological University (NTU). He received his B.Eng. degree from Shandong University in 1982, M.Eng degree from the University of South Australia in 1988, and Ph.D from the University of Adelaide, Australia in 1990, all in electrical engineering. From 1990 to 1995 he was a Senior Lecturer in the Department of Electrical and Computer Systems Engineering, Monash University, Australia.Dr Zhang has vast experience as an engineer, academic and researcher in the field of multimedia communications, switching and signaling, teletraffic engineering, network modeling and performance analysis for ATM networks, high speed data networks, mobile networks, satellite networks and optical networks. He has published more than 100 research papers in international journals and conferences. He has been the associate editor for the Journal of Computer Communications since 2000.  相似文献   

20.
Scheduling Sleeping Nodes in High Density Cluster-based Sensor Networks   总被引:2,自引:0,他引:2  
In order to conserve battery power in very dense sensor networks, some sensor nodes may be put into the sleep state while other sensor nodes remain active for the sensing and communication tasks. In this paper, we study the node sleep scheduling problem in the context of clustered sensor networks. We propose and analyze the Linear Distance-based Scheduling (LDS) technique for sleeping in each cluster. The LDS scheme selects a sensor node to sleep with higher probability when it is farther away from the cluster head. We analyze the energy consumption, the sensing coverage property, and the network lifetime of the proposed LDS scheme. The performance of the LDS scheme is compared with that of the conventional Randomized Scheduling (RS) scheme. It is shown that the LDS scheme yields more energy savings while maintaining a similar sensing coverage as the RS scheme for sensor clusters. Therefore, the LDS scheme results in a longer network lifetime than the RS scheme. Jing Deng received the B.E. and M.E. degrees in Electronic Engineering from Tsinghua University, Beijing, P. R. China, in 1994 and 1997, respectively, and the Ph.D. degree in Electrical and Computer Engineering from Cornell University, Ithaca, NY, in 2002. Dr. Deng is an assistant professor in the Department of Computer Science at the University of New Orleans. From 2002 to 2004, he visited the CASE center and the Department of Electrical Engineering and Computer Science at Syracuse University, Syracuse, NY as a research assistant professor, supported by the Syracuse University Prototypical Research in Information Assurance (SUPRIA) program. He was a teaching assistant from 1998 to 1999 and a research assistant from 1999 to 2002 in the School of Electrical and Computer Engineering at Cornell University. His interests include mobile ad hoc networks, wireless sensor networks, wireless network security, energy efficient wireless networks, and information assurance. Wendi B. Heinzelman is an assistant professor in the Department of Electrical and Computer Engineering at the University of Rochester. She received a B.S. degree in Electrical Engineering from Cornell University in 1995 and M.S. and Ph.D. degrees in Electrical Engineering and Computer Science from MIT in 1997 and 2000 respectively. Her current research interests lie in the areas of wireless communications and networking, mobile computing, and multimedia communication. Dr. Heinzelman received the NSF Career award in 2005 for her work on cross-layer optimizations for wireless sensor networks, and she received the ONR Young Investigator award in 2005 for her research on balancing resource utilization in wireless sensor networks. Dr. Heinzelman was co-chair of the 1st Workshop on Broadband Advanced Sensor Networks (BaseNets '04), and she is a member of Sigma Xi, the IEEE, and the ACM. Yunghsiang S. Han was born in Taipei, Taiwan, on April 24, 1962. He received the B.S. and M.S. degrees in electrical engineering from the National Tsing Hua University, Hsinchu, Taiwan, in 1984 and 1986, respectively, and the Ph.D. degree from the School of Computer and Information Science, Syracuse University, Syracuse, NY, in 1993. From 1986 to 1988 he was a lecturer at Ming-Hsin Engineering College, Hsinchu, Taiwan. He was a teaching assistant from 1989 to 1992 and from 1992 to 1993 a research associate in the School of Computer and Information Science, Syracuse University. From 1993 to 1997 he was an Associate Professor in the Department of Electronic Engineering at Hua Fan College of Humanities and Technology, Taipei Hsien, Taiwan. From 1997 to 2004 he was with the Department of Computer Science and Information Engineering at National Chi Nan University, Nantou, Taiwan. He was promoted to Full Professor in 1998. From June to October 2001 he was a visiting scholar in the Department of Electrical Engineering at University of Hawaii at Manoa, HI, and from September 2002 to January 2004 he was the SUPRIA visiting research scholar in the Department of Electrical Engineering and Computer Science and CASE center at Syracuse University, NY. He is now with the Graduate Institute of Communication Engineering at National Taipei University, Taipei, Taiwan. His research interests are in wireless networks, security, and error-control coding. Dr. Han is a winner of 1994 Syracuse University Doctoral Prize. Pramod K. Varshney was born in Allahabad, India on July 1, 1952. He received the B.S. degree in electrical engineering and computer science (with highest honors), and the M.S. and Ph.D. degrees in electrical engineering from the University of Illinois at Urbana-Champaign in 1972, 1974, and 1976 respectively. Since 1976 he has been with Syracuse University, Syracuse, NY where he is currently a Professor of Electrical Engineering and Computer Science and the Research Director of the New York State Center for Advanced Technology in Computer Applications and Software Engineering. His current research interests are in distributed sensor networks and data fusion, detection and estimation theory, wireless communications, intelligent systems, signal and image processing, and remote sensing he has published extensively. He is the author of Distributed Detection and Data Fusion, published by Springer-Verlag in 1997 and has co-edited two other books. Dr. Varshney is a member of Tau Beta Pi and is the recipient of the 1981 ASEE Dow Outstanding Young Faculty Award. He was elected to the grade of Fellow of the IEEE in 1997 for his contributions in the area of distributed detection and data fusion. In 2000, he received the Third Millennium Medal from the IEEE and Chancellor's Citation for exceptional academic achievement at Syracuse University. He serves as a distinguished lecturer for the AES society of the IEEE. He is on the editorial board Information Fusion. He was the President of International Society of Information Fusion during 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号