首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
A 2.4 GHz ultra-low-power RF transceiver with a 900 MHz auxiliary wake-up link for wireless body area networks(WBANs)in medical applications is presented.The RF transceiver with an asymmetric architecture is proposed to achieve high energy efficiency according to the asymmetric communication in WBANs.The transceiver consists of a main receiver(RX)with an ultra-low-power free-running ring oscillator and a high speed main transmitter(TX)with fast lock-in PLL.A passive wake-up receiver(WuRx)for wake-up function with a high power conversion efficiency(PCE)CMOS rectifier is designed to offer the sensor node the capability of work-on-demand with zero standby power.The chip is implemented in a 0.18μm CMOS process.Its core area is 1.6 mm~2. The main RX achieves a sensitivity of-55 dBm at a 100 kbps OOK data rate while consuming just 210μA current from the 1 V power supply.The main TX achieves +3 dBm output power with a 4 Mbps/500 kbps/200 kbps data rate for OOK/4 FSK/2 FSK modulation and dissipates 3.25 mA/6.5 mA/6.5 mA current from a 1.8 V power supply. The minimum detectable RF input energy for the wake-up RX is-15 dBm and the PCE is more than 25%.  相似文献   

2.
A single-chip low-power transceiver IC operating in the 2.4 GHz ISM band is presented. Designed in 0.18μm CMOS, the transceiver system employs direct-conversion architecture for both the receiver and transmitter to realize a fully integrated wireless LAN product. A sigma-delta (∑△) fractional-N frequency synthesizer provides on-chip quadrature local oscillator frequency. Measurement results show that the receiver achieves a maximum gain of 81 dB and a noise figure of 8.2 dB, the transmitter has maximum output power of -3.4 dBm and RMS EVM of 6.8%. Power dissipation of the transceiver is 74 mW in the receiving mode and 81 mW in the transmitting mode under a supply voltage of 1.8 V, including 30 mW consumed by the frequency synthesizer. The total chip area with pads is 2.7 × 4.2 mm^2.  相似文献   

3.
This paper presents a CML transceiver for a PCI-express generation 2 physical layer protocol that has been fabricated by SMIC’s 0.13μm CMOS technology.The active area of the transceiver is 0.016 mm~2 and it consumes a total of 150 mW power at a 1.2 V supply voltage.The transmitter uses two stage pre-emphasis circuits with active inductors,reducing inter-symbol interference and extended bandwidth;the receiver uses a time-domain adaptive equalizer,the circuit uses an inductive peaking technique and extends the bandwidth,and the use of active inductors reduces the circuit area and power consumption effectively.The measurement results show that this circuit could stably transmit the signal at the data rate of 5 Gbps,the output signal swing of the transmitter is 350 mV with jitter of 14 ps,the eye opening of the receiver is 135 mV and the eye width is 0.56 UI.The circuit performance sufficiently meets the requirements of the PCI-Express 2.0 protocol.  相似文献   

4.
一种用于短距离无线通信的低功耗多频带可配置收发机   总被引:2,自引:2,他引:0  
A reconfigurable multi-mode multi-band transceiver for low power short-range wireless communication applications is presented.Its low intermediate frequency(IF) receiver with 3 MHz IF carrier frequency and the direct-conversion transmitter support reconfigurable signal bandwidths from 250 kHz to 2 MHz and support a highest data rate of 3 Mbps for MSK modulation.An integrated multi-band PLL frequency synthesizer is utilized to provide the quadrature LO signals from about 300 MHz to 1 GHz for the transceiver multi-band application. The transceiver has been implemented in a 0.18μm CMOS process.The measurement results at the maximum gain mode show that the receiver achieves a noise figure(NF) of 4.9/5.5 dB and an input 3rd order intermodulation point(IIP3) of-19.6/-18.2 dBm in 400/900 MHz band.The transmitter working in 400/900 MHz band can deliver 10.2/7.3 dBm power to a 50Ωload.The transceiver consumes 32.9/35.6 mW in receive mode and 47.4/50.1 mW in transmit mode in 400/900 MHz band,respectively.  相似文献   

5.
A low cost integrated transceiver for mobile UHF passive RFID reader applications is implemented in a 0.18μm CMOS process. The transceiver contains an OOK modulator and a power amplifier in the transmitter chain, an IQ direct-down converter, variable-gain amplifiers, channel-select filters and a 10-bit ADC in the receiver chain. The measured output PldB power of the transmitter is 17.6 dBm and the measured receiver sensitivity is -70 dBm. The on-chip integer N synthesizer achieves a frequency resolution of 200 kHz with a phase noise of -104 dBc/Hz at 100 kHz frequency offset and -120.83 dBc/Hz at 1 MHz frequency offset. The transmitter, the receiver and the frequency synthesizer consume 201.34, 25.3 and 54 mW, respectively. The chip has a die area of 4 × 2.5 mm^2 including pads.  相似文献   

6.
This paper presents a transmitter IC with BPSK modulation for an ultra-wide band system.It is based on up-conversion with a high linearity passive mixer.Unlike the traditional BPSK modulation scheme,the local oscillator (LO) is modulated by the baseband data instead of the pulse.The chip is designed and fabricated by standard 0.18μm CMOS technology.The transmitter achieves a high data rate up to 400 Mbps.The amplitude of the pulse can be adjusted by the amplitude of the LO and the bias current of the dri...  相似文献   

7.
This paper presents a 2.4 GHz CMOS transceiver for the wireless personal area network (WPAN) inte- grated in 0.18/zm CMOS technology. This transceiver adopts a low-IF receiver, a MUX based transmitter and a fast-setting fractional-N frequency synthesizer. For achieving low cost and low power consumption, an inductor- less receiver front-end, an adaptive analog baseband, a low power MUX and a current-reused phase-locked loop (PLL) have been proposed in this work. Measured results show that the receiver achieves-8 dBrn of lIP3 and 31 dB of image rejection. The transmitter delivers 0 dBm output power at a data rate of 2 Mbps. The current consumption is 7.2 mA in the receiving mode and 6.9 mA in the transmitting mode, respectively.  相似文献   

8.
This paper explores an energy-efficient pulsed ultra-wideband (UWB) radio-frequency (RF) front-end chip fabricated in 0.18-μm CMOS technology,including a transmitter,receiver,and fractional synthesizer.The transmitter adopts a digital offset quadrature phase-shift keying (O-QPSK) modulator and passive direct-phase multiplexing technology,which are energy-and hardware-efficient,to enhance the data rate for a given spectrum.A passive mixer and a capacitor cross-coupled (CCC) source-follower driving amplifier (DA) are also designed for the transmitter to further reduce the low power consumption.For the receiver,a power-aware low-noise amplifier (LNA) and a quadrature mixer are applied.The LNA adopts a CCC boost common-gate amplifier as the input stage,and its current is reused for the second stage to save power.The mixer uses a shared amplification stage for the following passive IQ mixer.Phase noise suppression of the phase-locked loop (PLL) is achieved by utilizing an even-harmonics-nulled series-coupled quadrature oscillator (QVCO) and an in-band noise-aware charge pump (CP) design.The transceiver achieves a measured data rate of 0.8 Gbps with power consumption of 16 mW and 31.5 mW for the transmitter and the receiver,respectively.The optimized integrated phase noise of the PLL is 0.52° at 4.025 GHz.  相似文献   

9.
This paper presents the implementation of a multi-rate SerDes transceiver for IEEE 1394b applications. Simple and effective pre-emphasis and equalizer circuits are used in the transmitter and receiver, respectively. A phase interpolator based clock and data recovery circuit with optimized linearity is also described. With an on-chip fully integrated phase locked loop, the transceiver works at data rates of 100 Mb/s, 400 Mb/s, and 800 Mb/s, supporting three different operating modes of S100b, S400b, and S800b for IEEE 1394b. The chip has been fabricated using 0.13 μm technology. The die area of transceiver is 2.9×1.6 mm2 including bonding pads and the total power dissipation is 284 mW with 1.2 V core supply and 3.3 V input/output supply voltages.  相似文献   

10.
This paper presents a low power 2.4 GHz transceiver for ZigBee applications.This transceiver adopts low power system architecture with a low-IF receiver and a direct-conversion transmitter.The receiver consists of a new low noise amplifier(LNA) with a noise cancellation function,a new inverter-based variable gain complex filter (VGCF) for image rejection,a passive quadrature mixer,and a decibel linear programmable gain amplifier(PGA). The transmitter adopts a quadrature mixer and a class-B mode variable gain power amplifier(PA) to reduce power consumption.This transceiver is implemented in 0.18μm CMOS technology.The receiver achieves—95 dBm of sensitivity,28 dBc of image rejection,and -8 dBm of third-order input intercept point(IIP3).The transmitter can deliver a maximum of+3 dBm output power with PA efficiency of 30%.The whole chip area is less than 4.32 mm~2. It only consumes 12.63 mW in receiving mode and 14.22 mW in transmitting mode,respectively.  相似文献   

11.
文中针对USB 2.0规范设计了一种高速收发器.在480Mb/s数据速率的高速模式下,在常规收发器的基础上作了改进,并为包络检波器设计了新颖的采样比较电路.该收发器基于SMIC 0.18μn 1P6M 3.3V/1.8VCMOS混合信号工艺设计,HSPICE仿真结果表明:该收发器能够在480Mb/s的数据速率下按USB2.0规范要求发送和接收数据.  相似文献   

12.
An implementation of an implantable sensing biosystem composes of a readout circuit, a power management block, an embedded microcontroller unit (MCU), an implantable drug delivery section and a wireless uplink transceiver system. This paper describes a bi-directional wireless transceiver system for implantable sensing systems. The transceiver system is composed of an external and implantable transceiver, communicating through an inductive link. Half duplex communication between transceivers at a 10 Kbps data rate was achieved at a maximum distance of 4 cm. Command and data will be supplied to the implantable module by radio frequency (RF) telemetry utilizing an amplitude shift keying (ASK) modulated 2 MHz carrier frequency. A capacitor-less amplitude demodulation receiver architecture was produced in the research with implantable receiver core area measuring at 113.2 μm by 171.8 μm with average power dissipation at 815.1 μW at a 3.3 V single rail power supply. An active uplink transceiver utilizing load shift keying (LSK) as backward data telemetry was designed. Implantable transmitter core area measures 251.7 μm by 139.3 μm, consuming 103.62 mW while driving an RF ferrite core antenna at maximum reading range. Integrating both circuits, implantable transceiver, measuring 355.3 μm by 171.8 μm, was designed and implemented using TSMC 0.35 μm mixed-signal 2P4M 3.3 V standard CMOS process. The integrated circuit solution addressed solutions for many of the problems associated with implanted devices and introduces circuits which improve in several ways over previously published designs, in functionality and integration level. In addition to being fully integrated in plain CMOS technology, not relying at least partly on available specialized elements and expensive technologies, these building blocks improve on previous designs in performance and/or power consumption. This work succeeded in implementing building blocks for an implantable transceiver, which depends only on the absolute minimum off-chip components. A complete implantable chip is presented, which highlight the design tradeoffs and optimizations applied to the design of CMOS implantable system chips.  相似文献   

13.
A receiver targeting OC-48 (2.488 Gb/s) serial data link has been designed and integrated in a 0.8-μm CMOS process. An experimental receiving front-end circuit demonstrates the viability of using multiple phased clocks to overcome the intrinsic gate-speed limitations in the demultiplexing (receiving) and multiplexing (transmitting) of serial data. To perform clock recovery, data is 3× oversampled so that transitions can be detected to determine bit boundaries. The design of a transmitter for the high-speed serial data is also described. The complete transceiver occupies a die area of ~3×3 mm2  相似文献   

14.
均衡和预加重方法是实现MCM高性能收发器的关键。文中采用MCM互连的四端口[WTHX]S[WT5"BZ]参数传输线模型获得了信号衰减分布规律。在此基础上,采用0.13 μm CMOS工艺,设计了一种基于MCM互连的高速收发器:发送端采用二阶预加重技术提高了信号高频分量的增益,并通过高速CML驱动电路发送数据;接收端采用连续时间线性均衡器和基于LMS算法的自适应均衡器。仿真结果表明,该结构的MCM收发器完成了对10 Gbit·s-1随机信号的收发,补偿了高达-30 dB的互连损耗,并消除了码间干扰(ISI),总功耗仅为23.3 mW。  相似文献   

15.
A CMOS ultra-wideband impulse radio (UWB-IR) transceiver was developed in 0.18-/spl mu/m CMOS technology. It can be used for 1-Mb/s data communications as well as for precise range finding within an error of /spl plusmn/2.5 cm. The power consumptions of the transmitter and receiver for data communication are 0.7 and 4.0 mW, respectively. When an LNA operates intermittently through bias switching, the power consumption of the transceiver is only 1 mW. The range for data communication is 1 m with BER of 10/sup -3/. For ranging applications, the transmitter can reduce the power to 0.7 /spl mu/W for 1k pulses per second, and the receiver consumes little power. The transceiver design, all-digital transmitter, and intermittent circuit operation at the receiver reduce the power consumption dramatically, which makes the transceiver well suited for applications like sensor networks. The electronic field intensity is lower than 35 /spl mu/V/m, and thus the UWB system can be operated even under the current Japan radio regulations.  相似文献   

16.
A wireless type of chip-to-chip communication (WCC) technology is proposed as the next generation of 3D semiconductor technology. To demonstrate the feasibility of this technology, we designed a coil, transmitter and receiver for wireless chip-to-chip communication using a 50-nm digital CMOS process. The coil is designed using inductive coupling with design parameters that include the number of turns, the metal width, and the space between adjacent metal lines. A differential transceiver structure is proposed for the WCC technology. The transmitter of the transceiver acts as a termination and bias circuit for the receiver while the transceiver is operating as a receiver. The receiver is designed with a typical differential amplifier and a latch to recover the transmitted original digital signal. The proposed transceiver and coil for the proposed WCC technology is implemented using commercial 50-nm digital CMOS technology. Experimental results successfully demonstrate the feasibility of the WCC technology.  相似文献   

17.
The design of low-power LVDS(low voltage differential signaling) transceiver ICs is presented.The LVDS transmitter integrates a common-mode feedback control on chip,while a specially designed pre-charge circuit is proposed to improve the speed of the circuit,making the highest data rate up to 622 Mb/s.For the LVDS receiver design, the performance degradation issues are solved when handling the large input common mode voltages of the conventional LVDS receivers.In addition,the LVDS receiver also supports ...  相似文献   

18.
We report here on the design, fabrication, and high-speed performance of a parallel optical transceiver based on a single CMOS amplifier chip incorporating 16 transmitter and 16 receiver channels. The optical interfaces to the chip are provided by 16-channel photodiode (PD) and VCSEL arrays that are directly flip-chip soldered to the CMOS IC. The substrate emitting/illuminated VCSEL/PD arrays operate at 985 nm and include integrated lenses. The complete transceivers are low-cost, low-profile, highly integrated assemblies that are compatible with conventional chip packaging technology such as direct flip-chip soldering to organic circuit boards. In addition, the packaging approach, dense hybrid integration, readily scales to higher channel counts, supporting future massively parallel optical data buses. All transmitter and receiver channels operate at speeds up to 15 Gb/s for an aggregate bidirectional data rate of 240 Gb/s. Interchannel crosstalk was extensively characterized and the dominant source was found to be between receiver channels, with a maximum sensitivity penalty of 1 dB measured at 10 Gb/s for a victim channel completely surrounded by active aggressor channels. The transceiver measures 3.25times5.25 mm and consumes 2.15 W of power with all channels fully operational. The per-bit power consumption is as low as 9 mW/Gb/s, and this is the first single-chip optical transceiver capable of channel rates in excess of 10 Gb/s. The area efficiency of 14 Gb/s/mm2 per link is the highest ever reported for any parallel optical transmitter, receiver, or transceiver reported to-date.  相似文献   

19.
A low-power 2.4-GHz transmitter/receiver CMOS IC   总被引:1,自引:0,他引:1  
A 2.4-GHz CMOS receiver/transmitter incorporates circuit stacking and noninvasive baseband filtering to achieve a high sensitivity with low power dissipation. Using a single 1.6-GHz local oscillator, the transceiver employs two upconversion and downconversion stages while providing on-chip image rejection filtering. Realized in a 0.25-/spl mu/m digital CMOS technology, the receiver exhibits a noise figure of 6 dB and consumes 17.5 mW from a 2.5-V supply, and the transmitter delivers an output power of 0 dBm with a power consumption of 16 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号