首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
王洋  崔健  廖希  曾彦志  张杰 《电子与信息学报》2022,43(11):3156-3165
基于轨道角动量(OAM)的光无线复用通信技术在理想传输条件下能够大幅度提升通信系统性能,然而现实中大气湍流、孔径失配等因素会造成OAM模态间串扰导致误码率(BER)上升.为了降低光无线OAM复用系统在复杂环境中的误码率,该文首先建立了大气湍流、孔径失配场景下基于垂直分层空时码准则(VBLAST)的OAM复用通信系统(VBLAST-OAM),之后分析对比基于排序干扰连续消除检测算法(OSIC)、基于马尔科夫随机场置信度传播算法(MRF-BP)、基于OAM串扰特性的排序干扰连续消除算法(OAM-OSIC)应用于上述系统时的性能.结果表明:所提信号检测算法均能有效降低OAM复用系统在复杂环境中的误码率,其中,基于MRF-BP算法的系统性能最好;OAM-OSIC虽然属于次优算法,但在算法的运行开销方面具有较大优势.  相似文献   

2.
大气湍流下轨道角动量复用态串扰分析   总被引:4,自引:1,他引:4       下载免费PDF全文
柯熙政  宁川  王姣 《红外与激光工程》2018,47(11):1122002-1122002(7)
以加载QPSK调制信号的轨道角动量(OAM)光束为传输载波,以多个相位屏模拟大气湍流,研究不同大气湍流强度下OAM复用态的串扰情况。通过对复用光束光强和相位研究,得出在OAM复用态光强受到湍流影响时会发生明显的闪烁现象,光功率分散,相位发生旋转弯曲,且湍流强度越大,受到的影响越大。选用螺旋谱分析不同湍流强度下各OAM复用态之间的弥散程度,当大气湍流强度增加时,OAM态之间的弥散程度增加,且较强湍流会导致OAM复用态失真。同时,考虑OAM复用态之间的模式串扰以及每路携带信息的OAM态因大气信道引起的混合噪声而造成的码间干扰,对比研究了不同大气湍流强度下系统误码率随传输距离的变化,结果表明:系统误码率随传输距离的增长而增大,强湍流之下光束误码率会随着传输距离增长到一定程度后趋于平稳,弱湍流之下光束误码率会随着传输距离的增长而增大。  相似文献   

3.
4.
轨道角动量(OAM,orbital angular momentum)态可载荷信息,单个OAM态具有无穷大容量且不同OAM态间相互正交.基于OAM态复用的通信系统成为光通信和量子光学领域的研究热点之一.将高效OAM态分离方法应用于OAM态复用系统中,给出一种高效的OAM态通信复用方案.由于这种OAM态分离方法的特点,新方案可从OAM叠加态中同时解调出复用系统中不同轨道角动量态的载体信息,有效节省了复用系统接收端的解调设备,降低了OAM态复用系统的实现成本.数值仿真结果表明当系统信噪比大于23 dB时,系统误码率可以降至于10-4以下,本方案是一可行的OAM态复用方案.  相似文献   

5.
基于光轨道角动量的光通信数据编码研究进展   总被引:2,自引:1,他引:1  
具有轨道角动量的光束及其应用是目前国内外研究的一个热点方向,随着其应用与发展,也将对光通信领域带来深远的影响.介绍了具有轨道角动量的光束及其应用于光通信数据编码研究的主要进展,讨论了现有的用光轨道角动量进行数据编码的设计方法、工作原理、影响因素、过程机理和描述方法,在此基础上,对应用光轨道角动量实现光通信的研究前景进行了展望.  相似文献   

6.
7.
刘旭  马东堂 《半导体光电》2014,35(5):759-763,854
利用光的轨道角动量传递信息可有效提高信息传输的速率。介绍了光轨道角动量的基本概念和主要特性,探讨了基于轨道角动量的自由空间光通信的基本原理和典型系统,并对相关的关键技术进行了分析,在此基础上,对基于轨道角动量的自由空间光通信的应用前景和发展趋势作了展望。  相似文献   

8.
电磁波轨道角动量各模态间满足严格正交性,为无线通信系统提供了一个新的复用维度。当前无线轨道角动量通信的研究仍集中于理想视距(LoS)场景,在实际通信场景中,多径效应和非对齐效应等非理想传输情况通常是无法避免的,这会使得无线轨道角动量多入多出(OAM-MIMO)通信系统的性能遭受较大损失。为提升非理想无线OAM-MIMO通信系统性能,该文建模了一种更加符合实际传输场景的毫米波OAM-MIMO 10射线信道模型;然后评估了多径效应和非对齐效应带来的性能损失问题;最后,提出了一种低复杂度的平均相位补偿与迭代功率分配(APC-IPA)联合优化方案来消除非对齐和多径效应造成的相位偏差,提升系统信道容量。仿真结果表明:在同时遭受非对齐和多径效应时,所提APC-IPA联合方案能够有效地提升系统信道容量。  相似文献   

9.
1992年Allen等认识到光子可以携带轨道角动量(OAM),其表现为波前的螺旋相位分布。由于其独特的光场分布以及其拓扑荷理论上可取任意整数等特性, OAM光束在超分辨成像、高密度数据编码等领域具有重要作用。对微纳尺度下OAM光束与物质相互作用新机制的研究,有望为现代光子器件以及多维光与物质相互作用等领域提供新的思路和方法。介绍了本课题组利用OAM光束在纳米结构上实现多维信息复用以及OAM光束拓扑荷的探测技术,并对纳米尺度OAM光束的应用进行了展望。  相似文献   

10.
卜洋  杨志  赵丽娟  徐志钮 《半导体光电》2022,43(6):1099-1108
基于轨道角动量(OAM)的自由空间光通信(FSOC)具有通信容量大、信息传输快等优点。FSOC系统以大气作为传输媒介,受大气吸收、散射等影响,OAM光束传输质量严重下降。从OAM复用技术和大气湍流模型出发,综述了大气湍流强度对OAM空间光通信系统传输误码率和信道容量影响的研究现状,在此基础上综述多入多出均衡技术及自适应光学技术研究现状,并分析比较了两种技术中不同算法对大气湍流影响的抑制效果,对技术发展现状进行了展望。  相似文献   

11.

电磁涡旋因携带轨道角动量而具有高维可调制自由度,被引入无线通信中以提升频谱效率和抗干扰能力。该文首先介绍了轨道角动量和电磁涡旋的基本原理与特性;然后比较了电磁涡旋的产生方法,给出了超表面产生轨道角动量的工作原理,综述了基于超表面的轨道角动量产生方法和研究现状;总结了轨道角动量的传输性能、接收与检测方法、复用与解复用性能;最后讨论了未来在应用无线通信轨道角动量时需要解决的关键问题。

  相似文献   

12.
一种多速率的光码分多址(0CDMA)系统   总被引:1,自引:0,他引:1  
研究了一种多速率的光码分多址(OCDMA)系统。介绍了适合于多用户多速率的光码分多址(OCDMA)系统的结构:并行多码分信道结构。同时,还提出了在并行结构中采用二维光正交码。着重分析了在多用户采用不同速率同时使用的情况下,并行结构的光码分多址系统的比特误码率(BER)。  相似文献   

13.
携带有轨道角动量(OAM)的涡旋电磁(EM)波在雷达应用领域已经受到了广泛关注,利用涡旋电磁波,不仅可以观测到目标的线多普勒频移,还能够获取角多普勒频移信息。基于角多普勒效应,涡旋电磁波雷达具有检测垂直于径向运动分量的能力,可以实现对自旋目标微动特征的提取。首先,该文建立直角坐标系下角多普勒频移的参数化模型,给出了涡旋电磁波雷达、目标运动参数与角多普勒频移之间的定量关系描述。其次,当目标自旋轨迹垂直雷达视线(LOS)方向时,对获取的角多普勒频移信息进行分析,并提取了自旋目标微动特征。最后,通过仿真实验验证了所提方法的有效性和分析的准确性。  相似文献   

14.
通过对光通信系统的发展趋势和级联码的理论进行分析后,对光通信系统中传统级联码、并行型级联码和交织型级联码三种级联码的性能进行了深入研究。通过理论分析与仿真结果表明:传统级联码冗余度过大,并行型级联码的译码实现过于复杂,而交织型级联码是一种纠错性能优良、冗余度适中、易于实现的码型,更适用于光通信系统。  相似文献   

15.
多模索引调制正交频分复用系统(MM-OFDM-IM)在索引调制正交频分复用系统的基础上采用不同星座集对系统中的全部子载波进行索引调制,能有效地提高系统的子载波利用率和频谱效率.但全部子载波的利用影响了系统的子载波间抗干扰能力,导致误码率性能下降.针对这一问题,该文提出排列模式索引调制正交频分复用系统(PM-OFDM-I...  相似文献   

16.
由电磁动力学可知,电磁波可携带与极化方式相关的自旋角动量(Spin Angular Momentum, SAM) 和与坡印廷矢量运动方式相关的轨道角动量(Orbital Angular Momentum, OAM)。当OAM不为零时,电磁波的波前电场分布呈漩涡状且具有沿轴向传播的特性,人们形象地将这类电磁波称为涡旋电磁波。学界在平面电磁波场强数学模型的基础上引入了一个以OAM 的拓扑荷$ \ell $ (又称模态)为参数的傅里叶旋转因子描述涡旋电磁波的波前场,因此,涡旋电磁波波前具有与拓扑荷$ \ell $相关联的“极化”图案,利用不同模态的涡旋电磁波的极化图案可进一步提升无线通信系统信道容量。研究表明,在开放环境下由均匀圆阵列(Uniform Circular Array, UCA)阵列产生“平面”涡旋电磁波波束尽管可行,但要获得模态复用增益,需要探索基于复平面内单位圆周上分布的正交相位序列的涡旋电磁波波束产生与信息传输方法。文中也调研了无线射频领域OAM与MIMO体制相兼容的研究现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号