首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
收发组件是雷达前端的核心部件之一,其性能好坏直接影响着雷达的整体性能。本文介绍了一种紧凑型毫米波收发组件的基本原理,并对其中关键电路进行仿真设计,发射支路采用小型化“H”面”“T”型节形式进行波导功率合成。测试结果表明:在Ka频段,组件发射通道输出功率达到了40W,接收通道增益为23dB,噪声系数为7dB,组件尺寸为120mm×85mm×14mm。  相似文献   

2.
采用单片微波集成电路(MMIC)芯片技术和多芯片组件(MCM)微组装工艺,设计了一款小尺寸双通道发射接收(T/R)组件.组件由环形器、限幅器芯片、低噪声放大器(LNA)芯片、幅相控制多功能芯片、驱动放大器芯片和功率放大器芯片(PA)等部分构成.基于GaAs的LNA MMIC芯片具有更低噪声系数,基于GaN的PA MMIC芯片具有更高的输出功率及功率附加效率.组件接收通道采用基于GaAs的LNA芯片,发射通道采用基于GaN的PA芯片,设计了针对发射通道驱动放大器与功率放大器的协同脉冲调制电路.研制的T/R组件在8~12 GHz的频带内:接收通道在工作电压+5 V连续波的条件下,小信号增益大于20 dB,噪声小于3 dB;发射通道在周期1 ms,脉宽10%的调制脉冲条件下,脉冲发射功率大于46 dBm.T/R组件外形尺寸为70 mm×46 mm×15 mm.  相似文献   

3.
崔灿  姚常飞  顾希雅 《微波学报》2022,38(3):97-102
基于混合微波集成电路技术(HMIC)设计了一种W波段小型化高频收发组件。该收发组件由固态发射机、环形器和接收机三部分组成。发射支路输入信号经过倍频放大后进入二选一开关,输出到天线自检口或经由环形器输出。为了实现高输出功率,该组件采用功率合成的设计思想,通过3 dB波导桥结构实现对两路功放的合成,解决了单个单片功率放大器的输出功率有限的问题。所设计的收发组件整体尺寸为125 mm×90 mm×26.5 mm。实测结果表明,在90~96 GHz工作频带范围内,遥测电压4.23 V。该收发组件的发射部分输出功率范围为33.6~35.4 dBm,开关隔离度大于110 dB;接收部分增益范围为30.2~33 dB,噪声系数小于6.5 dB。该组件具备良好的射频性能,同时实现了高集成度、大功率、高增益、高隔离度的要求。  相似文献   

4.
《无线电工程》2017,(11):63-66
针对高功率T/R组件的小型化问题,提出了一种X波段氮化镓(Ga N)小型化T/R组件的设计与实现方法。在小型化尺寸内实现了4个收发通道,内部包含了318个元器件。对组件复杂功能及由此带来的工艺装配问题和热问题进行了阐述与分析。研制出了采用多功能芯片技术、多层复合基板技术和多芯片组装(MCM)技术的组件,内部高度集成,实现了小型化。测试结果表明,组件尺寸为65 mm×60 mm×8.5 mm,发射输出功率≥30 W,实现了小型化和良好的电气性能。  相似文献   

5.
收发组件作为雷达的核心部件之一,性能好坏直接影响到雷达的整体性能。本文介绍一种Ka波段应用于雷达导引头的收发组件的基本原理,并对关键过渡形式进行重点考虑。设计出了一种小型化的收发组件,该收发组件实现一发三收的功能,具有高功率、小体积、轻重量的特点,发射通道输出功率达到了2W,接收通道增益为23d B,噪声系数为6d B,尺寸为Φ40mm×15mm,重量为95g。  相似文献   

6.
针对机载有源相控阵雷达小型化、多功能、高功率的要求,研制了一款应用于C、X、Ku波段的双通道超宽带T/R砖块组件,外观尺寸为30.0 mm×70.0 mm×8.5 mm.组件在工作频带内可以实现6位移相、6位衰减,工作带宽达到12 GHz,发射输出功率≥ 37 dBm,接收增益达到22 dB.通过对电路中无源结构进行仿真,并利用得到的仿真结果和射频芯片实现链路仿真,解决了超宽带T/R组件端口驻波较差和接收增益平坦度差且难以预估的难题.最终制造的T/R组件具有超宽带、低噪声、高功率以及良好的幅相性能.  相似文献   

7.
罗鑫 《电讯技术》2021,61(3):373-378
介绍了一种Ka频段瓦式T组件的设计方法和关键技术。采用多层印制电路板(Printed Circuit Board,PCB)技术,实现了无源网络和馈电网络集成在同一块多层电路板上,滤波功能层和天线一体化集成,利用毛纽扣实现了组件的三维垂直互联。采用互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)工艺与砷化镓(GaAs)工艺相结合的芯片异构集成方案,成功研制出16通道带滤波功能层天线的T组件,体积为22 mm×22 mm×12 mm,质量不超过13 g。与同频段同功能的砖式T组件相比,体积缩减75%,质量降至10%。该组件充分发挥CMOS工艺强大的数模混合集成能力和化合物半导体工艺优异的射频性能,并将两类芯片在平面内直接异构拼装,在集成密度、功能密度、射频性能以及可实现性等多个方面获得了良好的平衡。  相似文献   

8.
本文设计了一种射频通道微波开关的故障检测方法,并基于此方法研制了一种射频通道微波开关的故障检测组件。该组件可以在不明显增加使用微波开关的大功率功放或大功率收发组件重量、体积,不增加发射通道插损、驻波的情况下,明显提高射频通道微波开关的可靠性和使用寿命,同时提供了大功率击穿报警信号和故障检测信号。  相似文献   

9.
基于相控阵系统高集成、低剖面的应用需求,研制了K频段64元瓦片式接收组件。通过高密度集成的三维设计思路,将64元接收通道按照矩形栅格进行阵列化排列,各功能电路横向布局、纵向集成,实现了组件的低剖面特性。对组件的关键电路设计、结构设计、热设计进行了详细介绍。通过实物测试,该接收组件单通道增益≥20 dB,噪声系数≤4.8 dB;每个通道可独立实现6位移相、6位衰减功能,移相均方根误差(RMS)精度≤6°,衰减RMS精度≤1.5 dB。组件尺寸为52 mm×52 mm×14 mm,质量小于150 g。该接收组件具有标准化的构架,可灵活地实现大规模阵列扩展。  相似文献   

10.
基于有源相控阵雷达的应用,设计了一款四通道的发射芯片,适用于发射1.2~1.4 GHz的射频信号.电路设计采用直接上变频的结构,将低频的基带信号转换为射频信号.针对直接上变频输出谐波多和输出功率低的问题,采用高阶滤波器、窄带选频网络的双平衡混频器和多级可调电压增益放大器(VGA)并联形式的驱动放大器等技术,降低了输出谐波的幅度并提高输出功率.电路采用SMIC 0.13 μm CMOS工艺进行了设计仿真和流片,芯片面积为3.6 mm×3.4 mm.测试结果表明,四通道直接上变频发射芯片的发射功率可达15.4 dBm,动态增益不小于36.3 dB,通道隔离度不小于43.3 dB.芯片的功耗为837.6 mW.  相似文献   

11.
针对光载无线通信(RoF)系统对高增益、小型化光接收模块(ROSA)的需求,基于混合集成技术,设计并制作了一种高增益的四通道ROSA器件,尺寸为20.0 mm×14.0 mm×5.9 mm。模块内集成了低噪声放大器(LNA)芯片以提高射频信号增益,建立了射频信号传输电路,并对器件特性进行了仿真分析。经测试,器件的射频信号增益达14 dB,-3 dB带宽为23 GHz,在1550 nm波长的入射光下,器件的响应度为0.81 A/W,相邻信道之间的射频信号串扰小于-40 dB。该模块对于减小RoF系统的体积和功耗具有重要意义。  相似文献   

12.
研制了一种小体积的S频段射频收发系统级封装( SIP)模块,内部集成了基于多种工艺的器件。模块接收通道一次变频,发射通道二次变频,内部集成中频和射频本振信号源。模块采用双腔结构,不同腔体之间通过绝缘子进行垂直互连,大大减小了模块体积,模块体积为40 mm×40 mm×10 mm。模块采用正向设计,其主要指标的测试结果为:接收通道动态范围-100~-40 dBm,输出信号0~2 dBm,噪声系数小于等于2.8 dB,带外抑制大于等于50 dBc;发射通道输出信号大于等于2 dBm,二次、三次谐波抑制大于等于60 dBc,杂波抑制大于等于55 dBc,相位噪声在1 kHz和10 kHz处分别小于等于-82 dBc/Hz和-91 dBc/Hz。实测结果与仿真结果基本一致。  相似文献   

13.
针对现代通信电子战系统对小型化射频前端的需求,该文基于低温共烧陶瓷(LTCC)技术研制出工作在30~3 000 MHz,具有高集成度的射频前端模组。该模组尺寸仅为48mm×46mm×12mm,质量仅为68.5g,在满足技术指标的同时,体积与质量均减小到原有产品的1/7。此外,该文还对三维互联和隔离度优化等高度集成关键技术进行了总结和分析。  相似文献   

14.
杨凯 《电子器件》2021,44(1):30-34
针对小型飞行器在飞行过程中工作状态参数的测试需求,设计了一种基于FPGA的小型化宽带零中频微波发射系统。该系统以FPGA为主控单元,接收飞行器上传感器的参数,通过正交上变频模块,实现QPSK调制,完成对所需频段微波信号的输出。经测试,该发射机输出的调制信号频率可达到4 000 MHz,功率可达到10 dBm,各项参数满足设计要求,能够实现数据的高速传输。  相似文献   

15.
对薄膜支撑空腔型微屏蔽传输线进行分析,提出微屏蔽传输线的物理结构。为了验证微屏蔽传输线在毫米波应用的优势,利用类比平行耦合微带线滤波器的方法设计了一种4阶切比雪夫三线对称结构微屏蔽线滤波器。通过对该微屏蔽腔体结构进行HFSS仿真,得到中心频率35 GHz的宽带滤波器,带宽15 GHz,带内插损小于0.5 dB,带外抑制>40 dB@53 GHz,器件尺寸8.24 mm×1.5 mm×0.65 mm。该设计为基于平面传输线的滤波器在毫米波频段的实现提供了一种可行的方法。  相似文献   

16.
设计了一种基于低温共烧陶瓷技术带状线形式的Ka波段带通滤波器,该滤波器被埋入11层的基板中。提出一种类同轴结构来减小共面波导到带状线转换之间的阻抗不连续性。整个带状线滤波器采用了金属直通孔来实现接地和屏蔽功能。测试结果表明,滤波器中心频率为34.69GHz,带宽1.73GHz内最大插入损耗为-4.5dB,通带内回波损耗低于-13.45dB。该测试结果包含两个射频接头。整个滤波器尺寸为9.8mm×5mm×1.056mm。这种紧凑埋置式的结构和测试结果表明,该带状线滤波器适合于毫米波多芯片组件的应用。  相似文献   

17.
提出一种基于低温共烧陶瓷(LTCC)技术实现的小型化平衡滤波器。该平衡滤波器频率范围为2.4~2.5GHz,可广泛应用于蓝牙通讯系统。在设计时利用垂直通孔互连工艺技术将滤波器和巴伦进行互连,并且集成在一个模块中,其中,蓝牙滤波器的设计采用半集总结构,Marchand巴伦采用独特的螺旋线宽边耦合带状线结构(SBCS),极大地缩小了巴伦尺寸。实现了具有阻抗变换功能的蓝牙波段微型平衡滤波器,其尺寸仅为2.5mm×2.0mm×1.2mm。测试结果表明,该平衡滤波器带内差损小于1.8dB,相位不平衡度小于±6°,均满足设计指标要求。  相似文献   

18.
针对射频MEMS滤波器的带外抑制能力较差和带内群延时不平坦的问题,设计了一种窄带宽、低插损、高选择性的L波段射频MEMS线性相位滤波器.选取高介电常数的衬底材料实现窄带传输,采用双层交指结构的谐振器实现线性相位,减小了电路体积.利用HFSS软件对滤波器的性能进行优化.结果表明,该滤波器的中心频率为1.46 GHz,带内...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号