首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigated the effects of gamma radiation on ZnS/CdTe-passivated HgCdTe photodiodes that were fabricated with one of two different surface treatments using bromine, Br2, or hydrazine, N2H4. Unlike the ZnS-passivated HgCdTe photodiodes, the ZnS/CdTe-passivated HgCdTe photodiodes showed no degradation in resistance-area product at zero bias (R0A) values after gamma irradiation of up to 1 Mrad. However, there is a significant difference between the bromine- and hydrazine-treated samples. Regardless of the dose of gamma radiation, there was little change in the forward current characteristics of the hydrazine-treated diode in comparison with the conventional bromine-treated diode. The hydrazine-treated diode showed fairly uniform R0A values of >107 Ω-cm2 up to 1 Mrad of gamma irradiation, whereas the bromine-treated diode showed an abrupt change in R0A values from ∼106 Ω-cm2 to ∼107 Ω-cm2 after gamma irradiation. Therefore, for use in a gamma radiation environment, the best combination for high-performance HgCdTe photodiodes is a ZnS/CdTe passivant that has been treated with hydrazine.  相似文献   

2.
Mg2(Si0.3Sn0.7)1−y Sb y (0 ≤ y ≤ 0.04) solid solutions were prepared by a two-step solid-state reaction method combined with the spark plasma sintering technique. Investigations indicate that the Sb doping amount has a significant impact on the thermoelectric properties of Mg2(Si0.3Sn0.7)1−y Sb y compounds. As the Sb fraction y increases, the electron concentration and electrical conductivity of Mg2(Si0.3Sn0.7)1−y Sb y first increase and then decrease, and both reach their highest value at y = 0.025. The sample with y = 0.025, possessing the highest electrical conductivity and one of the higher Seebeck coefficient values among all the samples, has the highest power factor, being 3.45 mW m−1 K−2 to 3.69 mW m−1 K−2 in the temperature range of 300 K to 660 K. Meanwhile, Sb doping can significantly reduce the lattice thermal conductivity (κ ph) of Mg2(Si0.3Sn0.7)1−y Sb y due to increased point defect scattering, and κ ph for Sb-doped samples is 10% to 20% lower than that of the nondoped sample for 300 K < T < 400 K. Mg2(Si0.3Sn0.7)0.975Sb0.025 possesses the highest power factor and one of the lower κ ph values among all the samples, and reaches the highest ZT value: 1.0 at 640 K.  相似文献   

3.
Excess low frequency noise is investigated for the first time in infrared MBE grown LWIR Hg1−xCdxTe double layer planar heterostructure (DLPH) detectors grown on lattice matched substrates. LWIR detectors having R0Aopt values at 40K in the 101–107 Θ-cm2 range have been characterized as a function of temperature between 120 and 20K. Detectors with R0Aopt≥103Θ-cm2 at 40K have theoretical diffusion limited performance down to 78K and detectors with R0Aopt ≥105 Θ-cm2 at 40K are within a factor of two of theoretical diffusion limited performance for T>65K. Activation energies extracted from noise (Vd=−100 mV) and dark current (Vd=−100 mV) vs temperature measurements were detector dependent. The activation energy for detectors with R0Aopt≈106 Θ-cm2 at 40K is ∼0.90*Eg to 0.99*Eg. The noise measured between 78 and 105K in the intermediate performance (R0Aopt∼103–104 Θ-cm2 at 40K) detectors are higher than the noise measured in the higher performance (R0Aopt∼105–107 Θ-cm2) detectors. In addition, the excess low frequency noise and the dark current at −100 mV in the intermediate and poor (R0Aopt∼101 Θ-cm2) performance detectors are temperature independent. For each detector measured, the activation energy extracted from noise (Vd=−100 mV) vs temperature measurements is equal to the activation energy extracted from the total dark current (Vd=−100 mV) vs temperature measurements. For different dark current mechanisms, the excess low frequency noise varies with temperature and also with area within statistical accuracy in the same manner as the total dark current through the detector. At 78K, the Tobin14 expression holds in the general sense for equal area detectors dominated by different current mechanisms and also for detectors with a wide range of implant dimensions (Aimp=3.85×10−7 cm2 to Aimp=6.25×10−4 cm2). Following measurements, the detectors were stripped of the passivation and overlaying metal layers and dressed by a defect etch to reveal defects in each detector. A correlation among noise, leakage current and defect type has been determined for each detector.  相似文献   

4.
We recently succeeded in fabricating planar Hg1−yCdyTe/Hg1−xCdxTe (x<y) heterostructure photodiodes with the p-on-n configuration. Here we discuss early results in detail and present new results on an expanded range of infrared operation. The material used for this demonstration was grown by molecular beam epitaxy on lattice-matched CdZnTe substrates. The p-on-n planar devices consist of an arsenic-doped p-type epilayer (y∼0.28) atop a long wavelength infrared n-type epilayer (x=0.22–0.23). The planar junctions were formed by selective pocket diffusion of arsenic deposited on the surface by ion implantation. Detailed analysis of the current-voltage characteristics of these diodes as a function of temperature shows that they have high performance and that their dark currents are diffusion-limited down to 52K. Low frequency noise measurements at a reverse bias voltage of 50 mV resulted in noise current values (at 1 Hz) as low as 1×10−14 amps/Hz0.5 at 77K. Average RoA values greater than 106 Ω-cm2 at 40K were obtained for these devices with cut-off wavelength values in the 10.6 to 12 μm range. Seventy percent of these devices have RoA values greater than 105 Ω-cm2 at 40K; further studies are needed to improve device uniformity. These results represent the first demonstration that high performance long wavelength infrared devices operating at 40K can be made using HgCdTe material grown by a vapor phase epitaxy growth technique.  相似文献   

5.
Low-Noise Mid-Wavelength Infrared Avalanche Photodiodes   总被引:1,自引:0,他引:1  
Mid-wavelength infrared (MWIR) p +n n + avalanche photodiodes (APDs) were fabricated using two materials systems, one with mercury cadmium telluride (HgCdTe) on a silicon (Si) substrate and the other with an indium arsenide/gallium antimonide (InAs/GaSb) strained layer superlattice (SLS). Diode characteristics, avalanche characteristics, and excess noise factors were measured for both sets of devices. Maximum zero-bias resistance times active area (R 0 A) of 3 × 106 Ω cm2 and 1.1 × 106 Ω cm2 and maximum multiplication gains of 1250 at −10 V and 1800 at −20 V were measured for the HgCdTe and the SLS, respectively, at 77 K. Gains reduce to 200 in either case at 120 K. Excess noise factors were almost constant with increasing gain and were measured in the range of 1 to 1.2.  相似文献   

6.
The effect of passivation with the solution of sodium sulfide (Na2S) in isopropyl alcohol on the room-temperature performance of the GaInAsSb/GaAlAsSb and InAs/InAsSbP photodiodes is investigated. After such a treatment the dark current density of the GaInAsSb/GaAlAsSb photodiodes at a reverse bias of 0.1 V is reduced from 5.5 × 10−2 to 2.1 × 10−3 A/cm2 and a zero-bias resistance-area product (R 0 A) is improved from 1.0 to 25.6 Ω cm2. For the InAs/InAsSbP photodiodes, the dark current density at U = −0.1 V is decreased from 1.34 to 8.1 × 10−1 A/cm2, while the R 0 A value increases from 4.4 × 10−2 to 7.3 × 10−2 Ω cm2. The method offers long-term stability of the photodiode performance.  相似文献   

7.
Oxide thermoelectric materials (Na1−y M y )1.4Co2O4 (M = Sr, Li; y = 0 to 0.4) were prepared by a sol–gel method. The influence of doping on the thermoelectric properties was investigated, and the phase composition was characterized by x-ray diffraction. Experimental results showed that the main crystalline phase of the undoped and Sr/Li-doped samples was γ-Na1.4Co2O4. The thermoelectric properties of Na1.4Co2O4 can be improved slightly by doping with Sr. Doping with Li improves the thermoelectric properties of Na1.4Co2O4. For a doping fraction of y = 0.1, the electrical conductivity of (Na1−y Li y )1.4Co2O4 at 288 K achieves its maximum value of 301.19 (Ω mm)−1. The Seebeck coefficient and power factor of (Na1−y Li y )1.4Co2O4 at 288 K achieve their maximum values of 172.28 μV K−1 and 7.44 mW m−1 K−2 at a doping fraction of y = 0.4.  相似文献   

8.
Hg1−x Cd x Te mid-wavelength infrared (MWIR) p +-n -n + and p +-n avalanche photodiodes (APDs) with a cut-off of 4.9 μm at 80 K were fabricated on Si substrates. Diode characteristics, avalanche characteristics, and excess noise characteristics were measured on two devices. Temperature-dependent diode and avalanche characterization was performed. Maximum 3 × 106 Ω cm2 and 9 × 105 Ω cm2 zero-bias resistance times active area (R 0 A) products were measured for the p +-n -n and p +-n devices at 77 K, respectively. Multiplication gains of 1250 and 410 were measured at −10 and −4 V for the p +-n -n + and p +-n APDs at 77 K, respectively, in the front-illumination mode with the help of a laser with an incident wavelength of 632 nm. The gains reduce to 200 and 50 at 120 K, respectively. The excess noise factor in all APDs was measured to be in the range of 1 to 1.2.  相似文献   

9.
The capability of growing state-of-the-art middle wavelength infrared (MWIR)-HgCdTe layers by molecular beam epitaxy (MBE) on large area silicon substrates has been demonstrated. We have obtained excellent compositional uniformity with standard deviation of 0.001 with mean composition of 0.321 across 1.5″ radii. R0A as high as 5 × 107 ω-cm2 with a mean value of 7 × 106 Θ-cm2 was measured for cut-off wavelength of 4.8 μm at 77K. Devices exhibit diffusion limited performance for temperatures above 95K. Quantum efficiencies up to 63% were observed (with no anti-reflection coating) for cut-off wavelength (4.8–5.4) μm @ 77K. Excellent performance of the fabricated photodiodes on MBE HgCdTe/CdTe/Si reflects on the overall quality of the grown material in the MWIR region.  相似文献   

10.
We have investigated the crystal growth of single-phase MnSi1.75−x by a temperature gradient solution growth (TGSG) method using Ga and Sn as solvents and MnSi1.7 alloy as the solute, and measured the thermoelectric properties of the resulting crystals. Single-phase Mn11Si19 and Mn4Si7 crystals were grown successfully using Ga and Sn as solvents, respectively. The typical size of a grown ingot of Mn11Si19 was 2 mm to 4 mm in thickness and 12 mm in diameter, whereas Mn4Si7 had polyhedral shape with dimensions in the range of several millimeters. The single-phase Mn11Si19 has good electrical conduction (ρ = 0.89 × 10−3 Ω cm to 1.09 × 10−3 Ω cm) compared with melt-grown multiphase higher-manganese silicide (HMS) crystals. The Seebeck coefficient, power factor, and thermal conductivity were 77 μV K−1 to 85 μV K−1, 6.7 μW cm−1 K−2 to 7.2 μW cm−1 K−2, and 0.032 W cm−1 K−1, respectively, at 300 K.  相似文献   

11.
Growth of Hg1−xCdxTe by molecular beam epitaxy (MBE) has been under development since the early 1980s at Rockwell Scientific Company (RSC), formerly the Rockwell Science Center; and we have shown that high-performance and highly reproducible MBE HgCdTe double heterostructure planar p-on-n devices can be produced with high throughput for various single- and multiplecolor infrared applications. In this paper, we present data on Hg1−xCdxTe epitaxial layers grown in a ten-inch production MBE system. For growth of HgCdTe, standard effusion cells containing CdTe and Te were used, in addition to a Hg source. The system is equipped with reflection high energy electron diffraction (RHEED) and spectral ellipsometry in addition to other fully automated electrical and optical monitoring systems. The HgCdTe heterostructures grown in our large ten-inch Riber 49 MBE system have outstanding structural characteristics with etch-pit densities (EPDs) in the low 104 cm−2 range, Hall carrier concentration in low 1014 cm−3, and void density <1000 cm2. The epilayers were grown on near lattice-matched (211)B Cd0.96Zn0.04Te substrates. High-performance mid wavelength infrared (MWIR) devices were fabricated with R0A values of 7.2×106 Ω-cm2 at 110 K, and the quantum efficiency without an antireflection coating was 71.5% for cutoff wavelength of 5.21 μm at 37 K. For short wavelength infrared (SWIR) devices, an R0A value of 9.4×105 Ω-cm2 at 200 K was obtained and quantum efficiency without an antireflection coating was 64% for cutoff wavelength of 2.61 μm at 37 K. These R0A values are comparable to our trend line values in this temperature range.  相似文献   

12.
The magnetic, transport, and thermoelectric properties of Ca1−x Sr x Ru1−y Mn y O3 have been investigated. Ferromagnetism with relatively high T C (>200 K) was introduced by Mn doping. In particular, ferromagnetism appeared in the Ca0.5Sr0.5Ru1−y Mn y O3 system at y > 0.2. The maximum T C (=270 K) was recorded for a specimen of Ca0.5Sr0.5Ru0.4Mn0.6O3. The ferromagnetism seems to be due to the mixed-valence states of Mn3+, Mn4+, Ru4+, and Ru5+ ions. The metallic character of Ru-rich specimens was suppressed by Mn substitution, and the system was transformed into a semiconductor at relatively low Mn content near y = 0.1. Specimens with higher Mn content (y > 0.8) had large thermoelectric power (50 μV K−1 to 130 μV K−1 at 280 K) accompanied by relatively low resistivity (0.03 Ω cm to 1 Ω cm). The Ca0.5Sr0.5Ru1−y Mn y O3 system seems to have good potential as a thermoelectric material for use above 300 K.  相似文献   

13.
We report an experimental and modeling study of ZnS y Se1−y /GaAs (001) structures, all of which comprised a uniform top layer of ZnS0.014Se0.986 grown on a compositionally graded buffer layer or directly on the GaAs substrate. High-resolution x-ray diffraction was used to estimate dislocation densities on type A slip systems, with misfit dislocation (MD) line segments oriented along the [1[`1]0] [1\bar{1}0] direction, and type B slip systems, with MD line segments oriented along a [110] direction. A control sample having no graded buffer exhibits equal dislocation densities on the two types of slip systems (D A ≈ D B ≈ 1.5 × 108 cm−2), but a forward-graded (FG) structure (grading coefficient of 27 cm−1) exhibits 20% more dislocations on the type B slip systems (D A ≈ 1.6 × 108 cm−2 and D B ≈ 1.9 × 108 cm−2) and a steep forward-graded structure (grading coefficient of 54 cm−1) exhibits 50% more type B dislocations (D A ≈ 2 × 108 cm−2 and D B ≈ 3 × 108 cm−2). The insertion of an overshoot interface reduced the dislocation densities in the uniform top layer by promoting annihilation and coalescence reactions, but type B dislocations were removed more effectively. Based on equilibrium calculations the overshoot graded layer in the steep graded overshoot structure is expected to exhibit large compressive and tensile strains, with a reversal in the sign of the strain near its middle, which may promote annihilation and coalescence reactions between threading dislocations.  相似文献   

14.
We have investigated phase relationships of the sesquisilicide alloys in the Ru-Mn-Si system. A series of chimney–ladder phases Ru1−x Mn x Si y (0.14 ≤ x ≤ 0.97, 1.584 ≤ y ≤ 1.741) are formed over a wide compositional range between Ru2Si3 and Mn4Si7. We also investigated thermoelectric properties of the directionally solidified Ru1−x Mn x Si y alloys as a function of Mn content and temperature. The dimensionless figure of merit ZT for alloys with high Mn content (x ≥ 0.75) increases as the Mn content increases. The alloy with x = 0.90 exhibits ZT as high as 0.76 at 874 K.  相似文献   

15.
Thermoelectric properties of Au-substituted Si-based clathrates, Ba8AuGa13Si32 and Ba6A2AuGa x Si45−x (A = Sr, Eu, = 13, 14), were experimentally and theoretically investigated. The polycrystalline samples of the Au-substituted Si-based clathrates were prepared by using the spark plasma sintering technique. The electronic structure of Ba6A2AuGa13Si32 was theoretically calculated by ab initio calculations, and the thermoelectric properties of Ba6A2AuGa x Si45−x were estimated through the calculated electronic structure. The effective mass of Ba6A2AuGa x Si45−x was experimentally estimated to be greater than that of Ba8AuGa13Si32. Experimentally observed electronic properties agree with the calculations for Ba6A2AuGa x Si45−x . The maximum ZT value of Ba6Sr2AuGa14Ge31 is about 0.5 at 850 K. The calculated thermoelectric properties agree very well with the experimental results in the range from room temperature to 900 K.  相似文献   

16.
Ohmic contacts to n-type GaN with low contact resistance were developed by (NH4)2Sx and KOH+(NH4)2Sx surface treatments prior to Ti/Al metal deposition. The lowest specific contact resistance of 3.0×10−6 Ω-cm2 was obtained for Ti/Al contacts in an (NH4)2Sx-treated GaN layer alloyed at 300°C for 3 min. To obtain the lowest specific contact resistance for a low temperature alloy, the (NH4)2Sx treatment conditions for both (NH4)2Sx and KOH+(NH4)2Sx-treated n-GaN layers have been investigated and the mechanism for ohmic formation in low temperature alloys analyzed.  相似文献   

17.
In this work, gated midwave infrared (MWIR) Hg1–x Cd x Te photodiodes are used to investigate the physical origin of 1/f noise generation. Gated photodiodes were fabricated on liquid-phase epitaxy p-type HgCdTe MWIR material with a vacancy-doped concentration of 1.6 × 1016 cm−3 and x = 0.31. CdTe was thermally deposited and used as both a passivant and a mask for the plasma-based type conversion, and ZnS was used as an insulator. Fabricated devices show a R 0 A of 1–5 × 104 Ωcm2 with zero gate bias. Application of 2 V to the gate improves the R 0 A by more than two orders of magnitude to 6.0 × 106 Ωcm2, which corresponds to the p-type surface being at transition between depletion and weak inversion. Trap-assisted tunneling (TAT) current was observed at negative gate biases and reverse junction biases. For gate biases greater than 3 V, a field-induced junction breakdown was observed. An I n = α I β f   −0.5 trend was observed above 200 pA reverse bias dark current, with α = 3.5 × 10−5 and β = 0.82, which corresponds to the TAT dominated region. Below 200 pA, junction generation-recombination (GR) current starts to dominate and this previously mentioned trend is no longer observed. Junction GR current was not seen to be correlated with 1/f noise in these photodiodes.  相似文献   

18.
The electrochemical behavior of nonaqueous dimethyl sulfoxide solutions of BiIII, TeIV, and SbIII was investigated using cyclic voltammetry. On this basis, Bi x Sb2−x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique in nonaqueous dimethyl sulfoxide solution, and the composition, structure, morphology, and thermoelectric properties of the films were analyzed. Bi x Sb2−x Te y thermoelectric films prepared under different potential ranges all possessed a smooth morphology. After annealing treatment at 200°C under N2 protection for 4 h, all deposited films showed p-type semiconductor properties, and their resistances all decreased to 0.04 Ω to 0.05 Ω. The Bi0.49Sb1.53Te2.98 thermoelectric film, which most closely approaches the stoichiometry of Bi0.5Sb1.5Te3, possessed the highest Seebeck coefficient (85 μV/K) and can be obtained under potentials of −200 mV to −400 mV.  相似文献   

19.
HgCdTe, because of its narrow band gap and low dark current, is the infrared detector material of choice for several military and commercial applications. CdZnTe is the substrate of choice for HgCdTe as it can be lattice matched, resulting in low-defect-density epitaxy. Being often small and not circular, layers grown on CdZnTe are difficult to process in standard semiconductor equipment. Furthermore, CdZnTe can often be very expensive. Alternative inexpensive large circular substrates, such as silicon or gallium arsenide, are needed to scale production of HgCdTe detectors. Growth of HgCdTe on these alternative substrates has its own difficulty, namely a large lattice mismatch (19% for Si and 14% for GaAs). This large mismatch results in high defect density and reduced detector performance. In this paper we discuss ways to reduce the effects of dislocations by gettering these defects to the edge of a reticulated structure. These reticulated surfaces enable stress-free regions for dislocations to glide to. In the work described herein, HgCdTe-on-Si diodes have been produced with R 0 A 0 of over 400 Ω cm2 at 78 K and cutoff of 10.1 μm. Further, these diodes have good uniformity at 78 K at both 9.3 μm and 10.14 μm.  相似文献   

20.
Pd-Ge based ohmic contact to n-GaAs with a TiW diffusion barrier was investigated. Electrical analysis as well as Auger electron spectroscopy and the scanning electron microscopy were used to study the contact after it was subjected to different furnace and rapid thermal annealing and different aging steps. All analyses show that TiW can act as a good barrier metal for the Au/Ge/Pd/n-GaAs contact system. A value of 1.45 × 10−6 Ω-cm2 for the specific contact resistance was obtained for the Au/TiW/Ge/Pd/n-GaAs contact after it was rapid thermally annealed at 425°C for 90 s. It can withstand a thermal aging at 350°C for 40 h with its ρc increasing to 2.94 × 10−6Ω-cm2 and for an aging at 410°C for 40 h with its ρc increasing to 1.38 × 10−5 Ω-cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号