首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
An enhancement-mode AlGaN/GaN HEMT with a threshold voltage of 0.35 V was fabricated by fluorine plasma treatment.The enhancement-mode device demonstrates high-performance DC characteristics with a saturation current density of 667 mA/mm at a gate bias of 4 V and a peak transconductance of 201 mS/mm at a gate bias of 0.8 V. The current-gain cut-off frequency and the maximum oscillation frequency of the enhancement-mode device with a gate length of 1μm are 10.3 GHz and 12.5 GHz,respectively,which is compa...  相似文献   

2.
We report an enhancement-mode InA1N/GaN HEMT using a fluorine plasma treatment. The threshold voltage was measured to be +0.86 V by linear extrapolation from the transfer characteristics. The transconductance is 0 mS/mm at Vc, s = 0 V and VDS = 5 V, which shows a truly normal-offstate. The gate leakage current density of the enhancement-mode device shows two orders of magnitude lower than that of the depletion-mode device. The transfer characteristics of the E-mode InA1N/GaN HEMT at room temperature and high temperature are reported. The current gain cut-off frequency (fT) and the maximum oscillation frequency (fmax) of the enhancement-mode device with a gate length of 0.3 #m were 29.4 GHz and 37.6 GHz respectively, which is comparable with the depletion-mode device. A classical 16 elements small-signal model was deduced to describe the parasitic and the intrinsic parameters of the device.  相似文献   

3.
刘波 《半导体学报》2013,34(4):044006-4
We report the DC and RF performance of InAlN/GaN high-electron mobility transistors with AlGaN back barrier grown on SiC substrates.These presented results confirm the high performance that is reachable by InAlN-based technology.The InAlN/GaN HEMT sample showed a high 2DEG mobility of 1550 cm2/(V·s) at a 2DEG density of 1.7×1013 cm-2.DC and RF measurements were performed on the unpassivated device with 0.2μm "T" gate.The maximum drain current density at VGS = 2 V is close to 1.05 A/mm in a reproducible way. The reduction in gate leakage current helps to increase the frequency performance of AIGaN back barrier devices. The power gain cut-off frequency of a transistor with an AIGaN back barrier is 105 GHz,which is much higher than that of the device without an AIGaN back barrier at the same gate length.These results indicate InAlN/GaN HEMT is a promising candidate for millimeter-wave application.  相似文献   

4.
SiN dielectrically-defined 0.15μm field plated GaN HEMTs for millimeter-wave application have been presented.The AlGaN/GaN hetero-structure epitaxial material for HEMTs fabrication was grown on a 3-inch SiC substrate with an Fe doped GaN buffer layer by metal-organic chemical deposition.Electron beam lithography was used to define both the gate footprint and the cap of the gate with an integrated field plate.Gate recessing was performed to control the threshold voltage of the devices.The fabricated GaN HEMTs exhibited a unit current gain cut-off frequency of 39 GHz and a maximum frequency of oscillation of 63 GHz.Load-pull measurements carried out at 35 GHz showed a power density of 4 W/mm with associated power gain and power added efficiency of 5.3 dB and 35%,respectively,for a 0.15 mm gate width device operated at a 24 V drain bias.The developed 0.15μm gate length GaN HEMT technology is suitable for Ka band applications and is ready for millimeter-wave power MMICs development.  相似文献   

5.
In this paper, we report the study of the electrical characteristics of GaN and AlGaN vertical p-i-n junctions and Schottky rectifiers grown on both sapphire and SiC substrates by metal-organic chemical-vapor deposition. For GaN p-i-n rectifiers grown on SiC with a relatively thin “i” region of 2 μm, a breakdown voltage over 400 V, and forward voltage as low as 4.5 V at 100 A/cm2 are exhibited for a 60-μm-diameter device. A GaN Schottky diode with a 2-μm-thick undoped layer exhibits a blocking voltage in excess of ∼230 V at a reverse-leakage current density below 1 mA/cm2, and a forward-voltage drop of 3.5 V at a current density of 100 A/cm2. It has been found that with the same device structure and process approach, the leakage current of a device grown on a SiC substrate is much lower than a device grown on a sapphire substrate. The use of Mg ion implantation for p-guard rings as planar-edge terminations in mesageometry GaN Schottky rectifiers has also been studied.  相似文献   

6.
RF-MBE Grown AlGaN/GaN HEMT Structure with High Al Content   总被引:5,自引:5,他引:0  
A Si doped AlGaN/GaN HEMT structure with high Al content (x=43%) in the barrier layer is grown on sapphire substrate by RF-MBE.The structural and electrical properties of the heterostructure are investigated by the triple axis Xray diffraction and Van der PauwHall measurement,respectively.The observed prominent Bragg peaks of the GaN and AlGaN and the Hall results show that the structure is of high quality with smooth interface.The high 2DEG mobility in excess of 1260cm2/(V·s) is achieved with an electron density of 1.429e13cm-2 at 297K,corresponding to a sheet-densitymobility product of 1.8e16V-1·s-1.Devices based on the structure are fabricated and characterized.Better DC characteristics,maximum drain current of 1.0A/mm and extrinsic transconductance of 218mS/mm are obtained when compared with HEMTs fabricated using structures with lower Al mole fraction in the AlGaN barrier layer.The results suggest that the high Al content in the AlGaN barrier layer is promising in improving material electrical properties and device performance.  相似文献   

7.
正We studied the performance of AlGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with an AlGaN buffer layer,which leads to a higher potential barrier at the backside of the twodimensional electron gas channel and better carrier confinement.This,remarkably,reduces the drain leakage current and improves the device breakdown voltage.The breakdown voltage of AlGaN/GaN double heterojunction HEMTs (~ 100 V) was significantly improved compared to that of conventional AlGaN/GaN HEMTs(~50 V) for the device with gate dimensions of 0.5 x 100μm and a gate-drain distance of 1μm.The DH-HEMTs also demonstrated a maximum output power of 7.78 W/mm,a maximum power-added efficiency of 62.3%and a linear gain of 23 dB at the drain supply voltage of 35 V at 4 GHz.  相似文献   

8.
Abstract: We propose a new structure of InxAll-xN/GaN high electron mobility transistor (HEMT) with gate length of 20 nm. The threshold voltage of this HEMT is achieved as -0.472 V. In this device the InA1N barrier layer is intentionally n-doped to boost the ION/IOFF ratio. The InAlN layer acts as donor barrier layer for this HEMT which exhibits an ION = 10-4.3 A and a very low IOFF = 10-14.4 A resulting in an ION/IoFF ratio of 1010.1. We compared our obtained results with the conventional InAlN/GaN HEMT device having undoped barrier and found that the proposed device has almost l0s times better ION/IOFF ratio. Further, the mobility analysis in GaN channel of this proposed HEMT structure along with DC analysis, C-V and conductance characteristics by using small-signal analysis are also presented in this paper. Moreover, the shifts in threshold voltage by DIBL effect and gate leakage current in the proposed HEMT are also discussed. InAlN was chosen as the most preferred barrier layer as a replacement of AlGaN for its excellent thermal conductivity and very good scalability.  相似文献   

9.
The growth,fabrication,and characterization of 0.2μm gate-length AlGaN/GaN HEMTs, with a high mobility GaN thin layer as a channel,grown on (0001) sapphire substrates by MOCVD,are described.The unintentionally doped 2.5μm thick GaN epilayers grown with the same conditions as the GaN channel have a room temperature electron mobility of 741cm2/(V·s) at an electron concentration of 1.52e16cm-3.The resistivity of the thick GaN buffer layer is greater than 1e8Ω·cm at room temperature.The 50mm HEMT wafers grown on sapphire substrates show an average sheet resistance of 440.9Ω/□ with uniformity better than 96%.Devices of 0.2μm×40μm gate periphery exhibit a maximum extrinsic transconductance of 250mS/mm and a current gain cutoff frequency of 77GHz.The AlGaN/GaN HEMTs with 0.8mm gate width display a total output power of 1.78W (2.23W/mm) and a linear gain of 13.3dB at 8GHz.The power devices also show a saturated current density as high as 1.07A/mm at a gate bias of 0.5V.  相似文献   

10.
We report the DC and RF characteristics of AlN/GaN high electron mobility transistors(HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 m S/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 m W/mm has been demonstrated at a drain bias of 10 V. To the authors’ best knowledge, this is the earliest demonstration of power density at the Ka band for Al N/Ga N HEMTs in the domestic, and also a high frequency of load-pull measurements for Al N/Ga N HEMTs.  相似文献   

11.
In this paper, an improved temperature model for AlGaN/GaN high electron mobility transistor (HEMT) is presented. Research is being conducted for a high-performance building block for high frequency applications that combine lower costs with improved performance and manufacturability. The effects of channel conductance in the saturation region and the parasitic resistance due to the undoped GaN buffer layer have been included. The effect of both spontaneous and piezoelectric polarization induced charges at the AlGaN/GaN heterointerface has been incorporated. The proposed model is used to determine the transfer characteristics, output current-voltage characteristics and small-signal microwave parameters of HEMTs. The investigated temperature range is from 100–600 K. The small signal microwave parameters have been evaluated to determine the unity current gain cut-off frequency (f T ). High f T (10–70 GHz) values and high current levels (~550 mA/mm) are achieved for a 1 μm AlGaN/GaN HEMTs. A custom DC measurement system is used to facilitate the DC characterization of the unpackaged GaN HEMT test device. The calculated critical parameters and the simulation results suggest that the performance of the proposed device degrades at elevated temperatures.  相似文献   

12.
李淑萍  孙世闯  张宝顺 《半导体技术》2017,42(10):732-735,789
研究了低温(LT) GaN和AlN不同插入层对抑制Mg掺杂p-GaN金属有机化学气相沉积外延中存在的记忆效应的影响,外延生长p-GaN缓冲层,制作具有该缓冲层的AlGaN/GaN高电子迁移率晶体管(HEMT),并对该器件进行电学测试.二次离子质谱仪测试表明p-GaN上10 nm厚的LT-GaN插入层相比于2 nm厚的AlN插入层能更好地抑制Mg扩散.霍尔测试表明,2 nm厚的AlN插入层的引入和GaN存在较大的晶格失配会引入位错,进而会降低AlGaN/GaNHEMT的电子迁移率以及增加其方块电阻;含有10 nm厚的LT-GaN插入层的p-GaN作为缓冲层的AlGaN/GaN HEMT,其方块电阻、电子迁移率以及二维电子气(2DEG)密度分别为334.9 Ω/口,1 923 cm2/(V·s)和9.68×1012 cm-2.器件具有很好的直流特性,其饱和电流为470 mA/mm,峰值跨导为57.7 mS/mm,电流开关比为3.13×109.  相似文献   

13.
High-performance X-band AlGaN/GaN high electron mobility transistor (HEMT) has been achieved by Γ-gate process in combination with source-connected field plate. Both its Schottky breakdown voltage and pinch-off breakdown voltage are higher than 100 V. Beside, excellent superimposition of direct current (DC) I-V characteristics in different Vds sweep range indicates that our GaN HEMT device is almost current collapse free. As a result, both outstanding breakdown characteristics and reduction of current collapse effect guarantee high microwave power performances. Based upon it, we have developed an internally-matched GaN HEMT amplifier with single chip of 2.5 mm gate periphery, which exhibits power density of 14.2 W/mm with 45.5 dBm (35.5 W) output power and a power added efficiency (PAE) of 48% under Vds = 48 V pulse operating condition at 8 GHz. To the best of our knowledge, it is the highest power density at this power level.  相似文献   

14.
In this paper, a novel GaN/AlGaN/GaN high electron mobility transistor (HEMT) is discussed. The device uses a thick GaN-cap layer (∼250 nm) to reduce the effect of surface potential fluctuations on device performance. Devices without Si3N4 passivation showed no dispersion with 200-ns-pulse-width gate-lag measurements. Saturated output-power density of 3.4 W/mm and peak power-added efficiency (PAE) of 32% at 10 GHz (VDS=+15 V) were achieved from unpassivated devices on sapphire substrates. Large gate-leakage current and low breakdown voltage prevented higher drain-bias operation and are currently under investigation.  相似文献   

15.
Growth of wide bandgap material over narrow bandgap material, results into a two dimensional electron gas (2DEG) at the heterointerface due to the conduction band discontinuity. In this paper the 2DEG transport properties of AlGaN/GaN-based high electron mobility transistor (HEMT) is discussed and its effect on various characteristics such as 2DEG density, C-V characteristics and Sheet resistances for different mole fractions are presented. The obtained results are also compared with AlGaAs/GaAs-based HEMT for the same structural parameter as like AlGaN/GaN-based HEMT. The calculated results of electron sheet concentration as a function of the Al mole fraction are in excellent agreement with some experimental data available in the literature.  相似文献   

16.
用MOCVD技术在高阻6H-SiC衬底上研制出了具有高迁移率GaN沟道层的AlGaN/AlN/GaN高电子迁移率晶体管(HEMT)结构材料,其室温和80K时二维电子气迁移率分别为1944和11588cm2/(V·s),相应二维电子气浓度为1.03×1013cm-2;三晶X射线衍射和原子力显微镜分析表明该材料具有良好的晶体质量和表面形貌,10μm×10μm样品的表面粗糙度为0.27nm.用此材料研制出了栅长为0.8μm,栅宽为1.2mm的HEMT器件,最大漏极饱和电流密度和非本征跨导分别为957mA/mm和267mS/mm.  相似文献   

17.
A recessed gate AlGaN/GaN high-electron mobility transistor (HEMT) on sapphire (0 0 0 1), a GaN metal-semiconductor field-effect transistor (MESFET) and an InGaN multiple-quantum well green light-emitting diode (LED) on Si (1 1 1) substrates have been grown by metalorganic chemical vapor deposition. The AlGaN/GaN intermediate layers have been used for the growth of GaN MESFET and LED on Si substrates. A two-dimensional electron gas mobility as high as 9260 cm2/V s with a sheet carrier density of 4.8×1012 cm−2 was measured at 4.6 K for the AlGaN/GaN heterostructure on the sapphire substrate. The recessed gate device on sapphire showed a maximum extrinsic transconductance of 146 mS/mm and a drain–source current of 900 mA/mm for the AlGaN/GaN HEMT with a gate length of 2.1 μm at 25°C. The GaN MESFET on Si showed a maximum extrinsic transconductance of 25 mS/mm and a drain–source current of 169 mA/mm with a complete pinch-off for the 2.5-μm-gate length. The LED on Si exhibited an operating voltage of 18 V, a series resistance of 300 Ω, an optical output power of 10 μW and a peak emission wavelength of 505 nm with a full-width at half-maximum of 33 nm at 20 mA drive current.  相似文献   

18.
在研制了AlGaN/GaN HEMT外延材料的基础上,采用标准工艺制作了2.5mm大栅宽AlGaN/GaNHEMT。直流测试中,Vg=0V时器件的最大饱和电流Ids可达2.4A,最大本征跨导Gmax为520mS,夹断电压Voff为-5V;通过采用带有绝缘层的材料结构及离子注入的隔离方式,减小了器件漏电,提高了击穿电压,栅源反向电压到-20V时,栅源漏电在10-6A数量级;单胞器件测试中,Vds=34V时,器件在8GHz下连续波输出功率为16W,功率增益为6.08dB,峰值功率附加效率为43.0%;2.5mm×4四胞器件,在8GHz下,连续波输出功率42W,功率增益8dB,峰值功率附加效率34%。  相似文献   

19.
Lattice-matched Pt/Au–In0.17Al0.83N/GaN hetreojunction Schottky barrier diodes (SBDs) with circular planar structure have been fabricated. The electrical characteristics of InAlN/GaN SBD, such as two-dimensional electron gas (2DEG) density, turn-on voltage, Schottky barrier height, reverse breakdown voltage and the forward current-transport mechanisms, are investigated and compared with those of a conventional AlGaN/GaN SBD. The results show that, despite the higher Schottky barrier height, more dislocations in InAlN layer causes a larger leakage current and lower reverse breakdown voltage than the AlGaN/GaN SBD. The emission microscopy images of past-breakdown device suggest that a horizontal premature breakdown behavior attributed to the large leakage current happens in the InAlN/GaN SBD, differing from the vertical breakdown in the AlGaN/GaN SBD.  相似文献   

20.
We report an AlGaN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with high-mobility two-dimensional electron gas (2-DEG) and reduced buffer leakage. The device features a 3-nm thin In/sub x/Ga/sub 1-x/N(x=0.1) layer inserted into the conventional AlGaN/GaN HEMT structure. Assisted by the InGaN layers polarization field that is opposite to that in the AlGaN layer, an additional potential barrier is introduced between the 2-DEG channel and buffer, leading to enhanced carrier confinement and improved buffer isolation. For a sample grown on sapphire substrate with MOCVD-grown GaN buffer, a 2-DEG mobility of around 1300 cm/sup 2//V/spl middot/s and a sheet resistance of 420 /spl Omega//sq were obtained on this new DH-HEMT structure at room temperature. A peak transconductance of 230 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 14.5 GHz, and a peak power gain cutoff frequency (f/sub max/) of 45.4 GHz were achieved on a 1/spl times/100 /spl mu/m device. The off-state source-drain leakage current is as low as /spl sim/5 /spl mu/ A/mm at V/sub DS/=10 V. For the devices on sapphire substrate, maximum power density of 3.4 W/mm and PAE of 41% were obtained at 2 GHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号