首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
This paper is concerned with robust longitudinal control of vehicles in intelligent vehicle highway systems by adaptive vehicle traction force control. Two different traction force controllers, adaptive fuzzy logic control and adaptive sliding-mode control, are proposed and applied to the fastest stable acceleration/deceleration and robust vehicle platooning problems. The motivation for investigating adaptive techniques arises from the unknown time-varying nature of the tire/road surface interaction that governs vehicle traction. Synchronous application of the engine or brake torques is also proposed for more stable vehicle maneuvers. The lack of controllability during braking (only one net input torque for the two control objectives, i.e., front and rear wheel slips) is partly overcome by applying auxiliary engine torque. Simulations of the two control methods are conducted using a complex nonlinear vehicle model which fully describes the dynamic behavior of the vehicle. Both controllers result in good performance under time-varying operating conditions.  相似文献   

2.
Visual control of an autonomous vehicle (BART)-thevehicle-following problem   总被引:2,自引:0,他引:2  
The authors consider the problem of vehicle-following including automatic steering and speed control of an autonomous vehicle following the motion of a lead vehicle. A visual control system for vehicle-following is presented. The system consists of the following modules: image processing, recursive filtering, and a driving command generator. First, the range and heading signal of the lead vehicle are obtained by visually identifying a unique tracking feature on the lead vehicle. Based upon this information, appropriate steering wheel and speed commands for driving are generated, which are then downloaded and executed on a microprocessor controller. The visual control system was tested on BART (Binocular Autonomous Research Team), a testbed vehicle developed at Texas A&M University for autonomous mobility. Successful full-scale test runs have been accomplished for speeds up to 20 mi/h  相似文献   

3.
《Mechatronics》2006,16(5):291-301
In this paper, adaptive vehicle skid control, for stability and tracking of a vehicle during slippage of its wheels without braking, is addressed. Two adaptive control algorithms are developed: one for the case when no road condition information is available, and one for the case when certain information is known only about the instant type of road surface on which the vehicle is moving. The vehicle control system with an adaptive control law keeps the speed of the vehicle as desired by applying more power to the drive wheels where the additional driving force at the non-skidding wheel will compensate for the loss of the driving force at the skidding wheel, and also arranges the direction of the vehicle motion by changing the steering angle of the two front steering wheels. Stability analysis proves that the vehicle position and velocity errors are both bounded. With additional road surface information available, the adaptive control system guarantees that the vehicle position error and velocity error converge to zero asymptotically even if the road surface parameters are unknown.  相似文献   

4.
有人/无人机协同空地作战关键技术综述   总被引:1,自引:1,他引:0  
有人/无人机协同作战是C4KISR体系下一种典型的作战方式,综合有人/无人机协同作战在各国的研究及进展情况,给出了有人/无人机协同作战指挥控制系统的结构,按照空域和时域两个方面分析了有人机、无人机两个平台的组成部分及协同控制功能,归纳出协同作战所需要解决的关键技术,并且给出了一个在典型作战任务想定下的作战情报指令及控制...  相似文献   

5.
This paper presents an integrated guidance and control design scheme for an unmanned air vehicle (UAV), and its flight test results. The paper focuses on the longitudinal control and guidance aspects, with particular emphasis on the terrain-following problem. An introduction to the mission, and the terrain-following problem is given first. Waypoints for climb and descent are defined. Computation of the reference trajectory in the vertical plane is discussed, including a terrain-following (TF) algorithm for real-time calculation of climb/descent points and altitudes. The algorithm is particularly suited for online computation and is therefore useful for autonomous flight. The algorithm computes the height at which the vehicle should fly so that a specified clearance from the underlying terrain is always maintained, while ensuring that the vehicle’s rate of climb and rate of descent constraints are not violated. The output of the terrain-following algorithm is used to construct a smooth reference trajectory for the vehicle to track. The design of a robust controller for altitude tracking and stability augmentation of the vehicle is then presented. The controller uses elevators for pitch control in the inner loop, while the reference pitch commands are generated by the outer altitude control loop. The controller tracks the reference trajectory computed by the terrain-following algorithm. The design of an electromechanical actuator for actuating the control surfaces of the vehicle during flight is also discussed. The entire guidance and control scheme is implemented on an actual experimental vehicle and flight test results are presented and discussed.  相似文献   

6.
It is shown that the vehicle dynamic control (VDC) system can improve the vehicle handling and active safety of driver and passengers considerably. The control of vehicle yaw moment through differential braking, based on the vehicle dynamic state feedbacks, is a traditional way of VDC. In this study, a new VDC system for a four motorized-wheels electric vehicle has been developed, for which the traction of each wheel can be controlled individually. Using this feature, the new VDC system provides the desired tractive force of vehicle and the desired external yaw moment through the integrated control of wheel motors. The structure of the control system is a multilayer type, which has been developed by using independent controllers, designed in accordance with the appropriate theories.  相似文献   

7.
Automatic vehicle monitoring (AVM) is an electronic means of gathering data and effecting command and control over a land vehicle fleet. While data on vehicle location are required for effective control, such systems are totally dependent upon refiable dedicated communications systems. By presenting a dispatcher or computer with information on each vehicle's location, decisions concerning the fleet's dispersion and operational readiness can be made. The Department of Transportation's Urban Mass Transportation Administration (UMTA) is developing such a system which will be evaluated in actual transit operations and offers potential application in traffic control operations.  相似文献   

8.
A novel control system is developed to control dynamic behavior of a vehicle subject to road disturbances. The novelty of this paper is to apply the impedance control on an active vehicle suspension system operated by a hydraulic actuator. A relation between the passenger comfort and vehicle handling is derived using the impedance parameters. The impedance control law is simple, free of model and can be applied for a broad range of road conditions including a flat road. Impedance control is achieved through two interior loops which are force control of the actuator by feedback linearization and fuzzy control loop to track a desired body displacement provided by the impedance rule. The system stability is analyzed. A quarter-car model of suspension system and a nonlinear model of hydraulic actuator are used to simulate the control system.  相似文献   

9.
This paper presents a method of realizing driver-compatible steering systems in ITS, for vehicles that have capabilities of carrying out path following tasks. The method aims to maintain steering smoothness from high to low vehicle speed, including nonhighway environments, which may involve tighter turns. Multiple look-ahead points are introduced, which allows to guide the vehicle with minimum steering corrections, while maintaining the tracking accuracy. The look-ahead points, one for recognizing the path deviation for the error-cancel feedback control and the other for predicting the necessary steering for feedforward control, are varied independently according to vehicle speed. This appropriately distributes the controls and determines the final output of the steering system. The look-ahead distance for feedforward is extended longer than the look-ahead distance for feedback at low velocities, and is shortened according to velocity increase. The look-ahead distance for the feedback acts the opposite. The steering control system was implemented onto an experimental vehicle and tests were conducted. The results of path following experiments show that the method is capable of realizing smooth steering control when tracking paths involving various turns, in a wide speed range, while maintaining tracking accuracy.  相似文献   

10.
A significant challenge in electric vehicles with multiple motors is how to control the individual drivetrains in order to achieve measurable benefits in terms of vehicle cornering response, compared to conventional stability control systems actuating the friction brakes. This paper presents a direct yaw moment controller based on the combination of feedforward and feedback contributions for continuous yaw rate control. When the estimated sideslip exceeds a pre-defined threshold, a sideslip-based yaw moment contribution is activated. All yaw moment contributions are entirely tunable through model-based approaches, for reduced vehicle testing time. The purpose of the controller is to continuously modify the vehicle understeer characteristic in quasi-static conditions and increase yaw and sideslip damping during transients. Skid-pad, step-steer and sweep steer tests are carried out with a front-wheel-drive fully electric vehicle demonstrator with two independent drivetrains. The experimental test results of the electric motor-based actuation of the direct yaw moment controller are compared with those deriving from the friction brake-based actuation of the same algorithm, which is a major contribution of this paper. The novel results show that continuous direct yaw moment control allows significant “on-demand” changes of the vehicle response in cornering conditions and to enhance active vehicle safety during extreme driving maneuvers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号