首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
现代工业技术水平的提升,大功率半导体激光器在军事领域与工业领域有着广泛地应用.对功率半导体激光器展开研究,分析其现有的研究进展.本次研究进展的分析,集中在激光器的驱动方法、功率效率、结温与噪声关系以及单管耦合等多方面的研究,对其未来发展提出展望.  相似文献   

3.
本文从理论上及实验上分析研究了半导体激光器(LD)功率输出特性与其腔面反射率之间的关系.研究结果表明,通过改变LD腔面反射率,可以使其输出功率增大,也可以使其转变为新的光电器件,如超辐射发光二极管(SLD)或行波半导体激光放大器(TW-SLA)等等.在大量实验数据的基础之上建立了LD输出功率曲线阈值与腔面反射率关系的经验公式,确定了LD最佳输出功率腔面反射率以及SLD和TW-SLA的工作条件.  相似文献   

4.
为了保证激光器输出功率的稳定,采用ADN2830给LD提供稳定的驱动电流,以及采用MAX1978控制热电制冷器(TEC),通过比例积分微分(PID)补偿电路产生控制信号控制TEC驱动电流的大小和方向,实现对LD的制冷或加热,从而保证LD工作在恒定温度下。经实验测试,LD在-35~45℃范围内输出光功率变化率小于0.06%;在-55~85℃范围内输出光功率变化率小于0.16%。  相似文献   

5.
大功率半导体激光器驱动电路   总被引:2,自引:0,他引:2       下载免费PDF全文
为实现30 W连续掺Yb光纤激光器,设计一种大功率(10 A)半导体激光器(LD)的驱动电路,该恒流源电路采用功率场效应管作电流控制元件,运用负反馈原理稳定输出电流,正向电流0 A~10 A连续可调,纹波峰值为10 mV,输出电流的短期稳定度达到1×10-5,具有过流保护、防浪涌冲击的功能。实际应用在30 W连续掺Yb光纤激光器中,结果表明该驱动电路工作安全可靠。  相似文献   

6.
半导体激光器的稳定性取决于驱动电源.结合消光比测试仪要求,设计了基于脉宽调制芯片UC3842的实用半导体激光器驱动电源.该驱动电源适用于功率较小的半导体激光器,输出占空比和频率可调的驱动信号,使之输出一定频率的调制光信号,实现了慢启动、高频及过压过流等保护功能,能使半导体激光器在室温下安全工作.通过实验结果分析,证明了方案的可行性,满足测试仪的要求.  相似文献   

7.
光泵浦半导体激光器是一种效率高、体积小、可靠性强的光源,功率可达几瓦,在不同波长具有良好的空间模质量。优异的性能与工艺水平的提高、器件集成技术的开发将使半导体激光器适用于远程通信和生物医学诊断领域。 半导体激光器之所以能逐渐发展为高性能器  相似文献   

8.
9.
小型化稳功率半导体激光器   总被引:5,自引:0,他引:5  
介绍小型化半导体激光器稳定功率输出的工作原理,讨论环路设计及调试过程中的重要参数,给出了实验数据。  相似文献   

10.
11.
激光二极管高性能的安全工作,离不开可靠的驱动电源。本文重点阐述了脉冲LD驱动电源的功率电路设计,包括电压型和电流型两种充电方式;储能电容的实际选择以及脉冲大电流的两种实现方式。  相似文献   

12.
设计了一种基于开关电源的具有功率自适应功能的半导体激光器(LD)驱动电源,以单片机作为控制核心,结合外围硬件系统,利用PID算法,通过改变开关电源绝缘门极晶闸管(IGBT)的占空比实现了LD的恒流驱动和功率自适应调节。经实验证明,该驱动电路纹波系数低、效率高,光功率输出稳定度优于0.5%,可满足LD实际工作的需要。  相似文献   

13.
808 nm波长光纤耦合高功率半导体激光器   总被引:9,自引:0,他引:9  
采用柱透镜对半导体激光器(LD)的输出光束进行了有效收集、预准直及多模光纤之间的耦合实验。采用808nm波长,150μm条宽结构的激光器件,与200μm芯径平端光纤的耦合效率高达90%以上,光纤输出功率为1.0W。分析了影响耦合效率的主要因素  相似文献   

14.
为了满足高精度激光气体检测中对激光二极管(Laser Diode,简称LD)工作温度控制的高精度要求,设计了一种基于ARM的高精度可调谐LD温度控制器.由高精度温度采集模块将LD的工作温度输送给ARM控制器,ARM控制器通过PID控制算法得到控制量,驱动半导体制冷器(TEC)进行加热或制冷,使LD的工作温度稳定在设定值.经实验测试,该温度控制器的温控范围为5℃至60℃,控制精度为±0.01℃左右,具有极高的稳定性和较短的响应时间.  相似文献   

15.
大功率LD与多模光纤的直接耦合   总被引:4,自引:0,他引:4  
将多模光纤末端研磨成圆锥面,与大功率LD进行直接耦合.分析了影响耦合效率的主要因素,提出了在工具显微镜上实现直接耦合的新方法,耦合效率高于50.8%.  相似文献   

16.
率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。分析了MOSFET器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOS-FET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。该电路具有结构简单,实用性强,响应速度快等特点。在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。  相似文献   

17.
大功率激光二极管泵浦全固态Nd:YVO4微片激光器   总被引:5,自引:0,他引:5  
李健  何京良 《光电子.激光》1999,10(5):395-396,404
本文报道了一种大功率激光二极管端面泵清的全固态Nd:YVO4微片激光器。在泵浦功率为11.9W时,获得7.2W的1064nm波长的TEM00模激光输出,光-光转换效率达到60%,激光斜效率达到65%。  相似文献   

18.
Wang Songlin  Zhou Bo  Ye Qiang  Wang Hui  Guo Wangrui 《半导体学报》2010,31(4):045009-045009-5
Novel improved power metal oxide semiconductor field effect transistor (MOSFET) drive circuits are introduced. An anti-deadlock block is used in the P-channel power MOSFET drive circuit to avoid deadlocks and improve the transient response. An additional charging path is added to the N-channel power MOSFET drive circuit to enhance its drive capability and improve the transient response. The entire circuit is designed in a 0.6 μm BCD process and simulated with Cadence Spectre. Compared with traditional power MOSFET drive circuits, the simulation results show that improved P-channel power MOSFET drive circuit makes the rise time reduced from 60 to 14 ns, the fall time reduced from 240 to 30 ns, and its power dissipation reduced from 2 to 1 mW, while the improved N-channel power MOSFET drive circuit makes the rise time reduced from 360 to 27 ns and its power dissipation reduced from 1.1 to 0.8 mW.  相似文献   

19.
王松林  周波  叶强  王辉  郭王瑞 《半导体学报》2010,31(4):045009-5
提出了一款新型功率管驱动电路。P沟道功率管驱动电路加入了防死锁模块防止了死锁的出现,提高了瞬态响应;N沟道功率管驱动电路加入了附加的充电支路,提高了驱动能力和瞬态响应。整个电路基于0.6μm BCD工艺,在Cadence Spectre下仿真。和传统的功率管驱动电路相比,新的P沟道功率管驱动电路的上升时间由60ns减少到14ns,下降时间由240ns减少到30ns,并且功耗从2mW减少到1mW;新的N沟道功率管驱动电路的上升时间由360ns减少到27ns,功耗从1.1mW减少到0.8mW。  相似文献   

20.
连续可调纳秒脉冲LD驱动电源的研制   总被引:4,自引:0,他引:4       下载免费PDF全文
为了满足单模尾纤输出脉冲半导体激光器及其后级光放大的要求,研制了一种重频、脉宽及峰值电流均连续可调的纳秒脉冲驱动电源.该电源使用功率场效应管作为开关,通过分析其驱动特性,采用合适的栅极驱动电路,从而缩短了脉冲宽度,增加了带负载能力;同时电源中的保护电路采用自断电等保护措施,能有效保证LD的安全工作.实验结果表明,该驱动电源工作稳定,能满足单模尾纤输出脉冲LD重频、脉宽、峰值可调的要求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号