共查询到20条相似文献,搜索用时 46 毫秒
1.
该文提出了一种基于Gabor小波的活动围道纹理分割新方法。该方法先用Gabor小波提取图像的纹理特征,再用Chan-Vese模型进行分割。与其它基于Chan-Vese模型的纹理分割方法相比,基于Gabor小波的活动围道的纹理分割方法有两个优点:一是同时使用纹理特征和灰度信息演化围道,可分割纹理图像和非纹理图像,分割方法的灵活性好;二是在分割多类目标时,采用多级分层式曲线演化方法解决了初始围道难以选择的问题。对自然界真实图像和遥感图像的分割实验结果说明,该文提出的分割方法精度高。 相似文献
2.
提出一种基于最小错误率和快速水平集的图像分割方法,通过对速度项和停止条件的重新设计,实现了快速而有效的图像分割。算法采用模式分类思想,以统计直方图来近似目标和背景区域的概率密度,对基于最小错误率的判别函数进行平滑滤波以获得外部速度,从而实现曲线的进化;同时,分割过程在分类错误率达到最小时停止。实验结果表明,本文算法对弱边缘、低对比度灰度图像具有较好的分割效果,且具有较强的抗噪性能;在分割速度上,本文算法也明显优于几种已有算法。 相似文献
3.
基于CT图像的肺实质分割不仅仅是后续图像处理最基础和最重要的技术,而且是一个典型的亟待解决的问题。本文利用水平集方法能初步获取较好的目标轮廓的特点和分水岭算法准确的边缘检测能力,提出一种基于水平集和分水岭相结合的改进轮廓检测算法。该算法采用由粗糙到准确的方式,在运用水平集演化初步检测目标轮廓的基础上,进一步运用标记分水岭算法检测准确的轮廓边界。结果表明,该方法能实现肺实质分割,解决了肺结节检测的预处理问题。 相似文献
4.
重点阐述了两种几何活动轮廓模型,基于梯度信息的李纯明模型和基于区域信息的C-V模型,在分析了两种模型的优缺点后,将李纯明模型中的罚函数项引入到C-V模型中,提出了无需初始化的C-V模型。实际结果表明,改进后模型具有李纯明模型的分割速度和C-V模型的效果。 相似文献
5.
基于局部子区域的活动轮廓图像分割方法 总被引:3,自引:2,他引:1
这里的方法旨在解决复杂多纹理图像中的目标分割问题。沿袭局部化思路,进一步提出基于局部子区域的方法,介绍了该方法下能量函数的设计方法,并与全局统一能量模型方法和局部能量方法进行了实验对比。实验表明,该方法在继承一般局部区域方法的分割能力的同时,较好的解决了复杂多纹理图像的目标分割问题,能较好的分割多纹理形成的物体边界,成功扩展了基于区域的活动轮廓的分割方法对图像的适应能力。 相似文献
6.
7.
在图像分割领域中,基于离散水平集的图像分割方法不但对低信噪比图像难以实现正确地分割,而且分割速度较慢。针对这一问题,该文提出了一个基于连续水平集的图像分割方法。利用2维拉格朗日基函数的线性组合把水平集函数表示成连续函数。最小化实现图像分割的能量函数,建立基函数系数演化的微分方程。因此能量函数的最小值可直接根据拉格朗日的系数值获得。利用简单有限差分法对系数演化微分方程求解,实现了低信噪比图像的快速分割。实验结果表明该方法具有理想的分割结果。 相似文献
8.
9.
红外图像大都存在边缘模糊或离散状边缘的特点,并且图像的先验知识较少,因此红外图像的分割是比较困难的。针对这种情况,该文提出了一种基于图像全局信息并且不需要重新初始化的变分水平集红外图像分割方法,不考虑图像边缘梯度的影响,将图像全局信息作为外部能量项,在很大程度上克服了边缘模糊时过分割的情况。同时通过引入内部变形能量约束水平集函数逼近符号距离函数,省去了重新初始化水平集函数的过程,简化了计算,减小了因重新初始化水平集函数带来的误差。将算法应用在红外图像的分割中,验证了算法的有效性。 相似文献
10.
研究了基于水平集的图像分割,提出了一种无需重新初始化,基于边缘信息的变分水平集图像分割算法.该算法消除了影响水平集计算量的重新初始化步骤,加速了轮廓线的演化,提高了算法的鲁棒性,同时使得初始化方法更加灵活. 相似文献
11.
Active contour segmentation is an important stage in image analysis applications. In this article, an improved region based active contour segmentation is proposed. The proposed active contour model speeds up the contour convergence by up to 40% while maintaining the advantages of a local region based active contour model by reducing the number of iterations. Moreover, we propose a low-complexity pipelined VLSI architecture for improved region based active contour model targeting FPGA and 90 nm ASIC platforms. The proposed pipelined design offers an increased speed of operation. Its complexity is independent of the size of image. 相似文献
12.
In this paper, by proposing a two-stage segmentation method based on active contour model, we improve the procedure of former image segmentation methods. The first stage of our method is computing weights, means and variances of image by utilizing Mixture of Gaussian distribution which parameters are obtained from EM-algorithm. Once they are obtained, in the second stage, by incorporating level set method for minimizing energy function, the segmentation is achieved. We use an adaptive direction function to make the curve evolution robust against the curves initial position and a nonlinear adaptive velocity to speed up the process of curve evolution and also a probability-weighted edge and region indicator function to implement a robust segmentation for objects with weak boundaries. The paper consists of minimizing a functional containing a penalty term in an attempt to maintain the signed distance property in the entire domain and an external energy term such that it achieves a minimum when the zero level set of the function is located at desired position. 相似文献
13.
A convex active contour model based on local image statistics is proposed in this paper. By assuming that the intensity distribution of the image pixels in a window is described by a Gaussian distribution, our model is able to segment images with intensity inhomogeneity. Due to the convexity of the proposed model, we introduce a dual formulation to solve the minimization problem and obtain a much efficient method. Experiments show that the segmentation results of the proposed method are similar to that of the non-convex method based on local statistics, but our method is much more efficient. 相似文献
14.
一种具有向心力的新型Snake算法 总被引:4,自引:0,他引:4
动态轮廓模型(Snake算法)是一种较好的目标轮廓检测方法。但是传统的Snake算法在对其能量函数进行优化时,不能检测多目标、血管内轮廓和凹形轮廓。文章首先对图像进行自动Snake初始化,然后在Snake 的成长过程中加入向心力因子。实验结果表明,新的算法能够检测多目标、血管内轮廓和凹形轮廓,优于传统的Snake算法。 相似文献
15.
Active contours driven by weighted region-scalable fitting energy based on local entropy 总被引:4,自引:0,他引:4
In this paper, we present a scheme of improvement on the region-scalable fitting (RSF) model proposed by Li et al. (Minimization of region-scalable fitting energy for image segmentation, IEEE Transactions on Image Processing 17(10) (2008) 1940-1949) in terms of robustness to initialization and noise. First, the Gaussian kernel for the RSF energy is replaced with a “mollifying” kernel with compact support. Second, the RSF energy is redefined as a weighted energy integral, where the weight is local entropy deriving from a grey level distribution of image. The total energy functional is then incorporated into a variational level set formulation with two extra internal energy terms. The new RSF model not only handles better intensity inhomogeneity, but also allows for more flexible initialization and more robustness to noise compared to the original RSF model. 相似文献
16.
This paper presents a new region-based active contour model in a variational level set formulation for image segmentation. In our model, the local image intensities are described by Gaussian distributions with different means and variances. We define a local Gaussian distribution fitting energy with a level set function and local means and variances as variables. The energy minimization is achieved by an interleaved level set evolution and estimation of local intensity means and variances in an iterative process. The means and variances of local intensities are considered as spatially varying functions to handle intensity inhomogeneities and noise of spatially varying strength (e.g. multiplicative noise). In addition, our model is able to distinguish regions with similar intensity means but different variances. This is demonstrated by applying our method on noisy and texture images in which the texture patterns of different regions can be distinguished from the local intensity variance. Comparative experiments show the advantages of the proposed method. 相似文献
17.
《Journal of Visual Communication and Image Representation》2014,25(7):1732-1745
This paper presents a fuzzy energy-based active contour model with shape prior for image segmentation. The paper proposes a fuzzy energy functional including a data term and a shape prior term. The data term, inspired from the region-based active contour approach proposed by Chan and Vese, evolves the contour relied on image information. The shape term inspired from Chan and Zhu’s work, defined as the distance between the evolving shape and a reference one, constrains the evolving contour with respect to the reference shape. To align the shapes, we exploit the shape normalization procedure which takes into account the affine transformation. In addition, to minimize the energy functional, we utilize a direct method to calculate the energy alterations. The proposed model therefore can deal with images with background clutter and object occlusion, improves the computational speed, and avoids difficulties associated with time step selection issue in gradient descent-based approaches. 相似文献
18.
Region-based active contour models are effective in segmenting images with poorly defined boundaries but often fail when applied to images containing intensity inhomogeneity. The traditional models utilize pixel intensity and are very sensitive to parameter tuning. On the other hand, machine learning algorithms are highly effective in handling inhomogeneities but often result in noise from misclassified pixels. In addition, there is no objective function. We propose a framework which integrates machine learning with a region-based active contour model. Classification probability scores from machine learning algorithm, which are regularized using a non-linear function, are used to replace the pixel intensity values during energy minimization. In our experiments, we integrate the k-nearest neighbours and the support vector machine with the Chan-Vese method and compare the results obtained with the traditional methods of Chan-Vese and Li et al. The proposed framework gives better accuracy and less sensitive to parameter tuning. 相似文献
19.
The zero-crossings of image Laplacian isimportant for edge detection, which can accurately determine the edges of the image. In this paper, we propose anovel active contour model that utilizes the image Laplacian to construct an energy functional. We minimize thisfunctional and get a term which is related to typical image segmentation that the boundary is the zero-crossingsof image Laplacian. In order to improving the ability toresist noise and extending the capture range of the forcebased on this energy functional, we propose another energyfunctional of total variation for image Laplacian. Moreover, our model is incorporated with a variational levelset formulation without re-initialization proposed by Liet al. Therefore, re-initialization is unnecessary. In addition, interior contours are automatically detected withonly one initial contour. Comparisons with other majoredge-based or region-based models, such as Geodesic active contours (GAC) and the piecewise constant model (CV model), show advantages in segmentation of images withweak edges or intensity in-homogeneity. 相似文献
20.
针对SAR图像感兴趣区域分割问题,提出了一种基于统计模型的变分水平集分割方法。该方法在分析SAR图像特征的基础上,利用相干斑噪声的统计模型直接定义了关于水平集函数的能量泛函,不同于一般水平集方法中关于参数化曲线的能量泛函。通过极小化能量泛函,建立了水平集函数演化的偏微分方程。对水平集演化方程的数值求解,实现了对SAR图像感兴趣区域的分割。分别采用模拟和真实SAR图像对提出的方法进行了验证,试验结果表明该方法充分利用了SAR图像的特征信息,不需要相干斑噪声预处理,能够准确实现对SAR图像感兴趣区域的分割。 相似文献