首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
光伏并网逆变器最大功率点的跟踪控制   总被引:2,自引:0,他引:2  
本文通过对太阳能电池的伏安特性及功率电压曲线的分析,给出了太阳能电池最大输出功率点的跟踪方法.通过分析比较,得出在光强变化较快的情况下光伏并网逆变器迅速跟踪最大功率点的方法.  相似文献   

2.
为了寻找一种能更好的实现太阳能电池最大功率点跟踪的方法,文中分析了太阳能电池的数学模型和在外部环境(温度、光照强度)变化的情况下太阳能电池的输出特性。介绍了太阳能电池最大功率点跟踪技术的原理,并提出了一种自适应变步长的方法,克服了传统固定步长方法的不足。仿真结果表明,该方法能够较快地跟踪光伏极板的最大功率点,使太阳能电池工作在最大功率点。  相似文献   

3.
文中针对太阳能电池最大输出功率点跟踪技术的研究和应用现状,提出了一种基于U(电压)、I(电流)、P(功率)、T(温度)多变量的MPPT协同控制方法。该方法充分考虑了环境的变换对最大输出功率点的影响,避免了扰动法和增量电导法的误判问题,以及固定电压法无法跟踪问题。利用Matlab/Simulink建立仿真系统,结果验证了该方法的可行性,以及该方法能提高最大输出功率点跟踪的效率和精度。  相似文献   

4.
文章采用了自适应模糊控制来跟踪光伏发电系统的最大功率输出点.自适应模糊控制算法比传统的模糊控制算法对如负载跳变、太阳能电池以及外部条件的改变具有更强的适应能力,能更准确的跟踪系统的最大功率输出点.光伏发电系统由太阳能电池、交错并联磁集成Boost变换器和自适应模糊控制器组成.采用交错并联磁集成技术可以减小电感的稳态相电流纹波,提高变换器的效率,同时还能提高光伏发电系统的暂态性能.自适应模糊控制方法对外界条件的改变具有更强的适应能力.最后使用了ORCAD软件对整个系统进行了仿真,并对负载突变和太阳能电池电流改变进行了仿真.仿真结果表明了采用自适应模糊控制算法可以提高光伏发电系统的总体性能.  相似文献   

5.
采用滞环比较法实现太阳能电池的最大功率追踪   总被引:11,自引:0,他引:11  
通过对太阳能电池伏安特性及功率电压曲线的分析,结合光伏并网系统的特性和太阳能电池的最大功率点的跟踪原理,并提出了一种采用软件实现太阳能电池最大功率点追踪的方法。与普通的登山法相比,该方法能够准确快速地跟踪到太阳电池的最大功率点,避免了在最大功率附近因扰动而造成功率损失,并具有较好的稳定性。  相似文献   

6.
太阳电池最大功率点跟踪研究   总被引:5,自引:1,他引:4  
根据太阳电池的特性,设计了一种基于“二次插值法”的太阳能电池最大功率跟踪器,并对设计的MPPT控制器进行了测试。实验结果表明它有较好的跟踪性能。  相似文献   

7.
嵌入式太阳能充电系统的设计   总被引:1,自引:0,他引:1  
给出了采用嵌入式芯片来对太阳进行角度跟踪和太阳能电池板最大功率点跟踪,从而实现用太阳能对用电电路进行充电的太阳能充电系统的设计方法。利用该方法可以对太阳能进行充分利用.以使太阳能电池保持最大的输出功率。  相似文献   

8.
电导增量法实现光伏系统的最大功率点跟踪控制   总被引:2,自引:1,他引:1  
最大功率点跟踪控制是光伏并网发电系统中经常遇见的问题。介绍光伏并网系统的结构,通过对太阳能电池功率电压曲线的分析,结合光伏并网系统的特性和太阳能电池的最大功率点的跟踪原理,提出一种采用电导增量法来实现光伏系统的最大功率点跟踪的方法。此方法控制精确、响应速度比较快,适用于大气条件变化较快的场合。  相似文献   

9.
光伏并网发电系统是光伏发电系统发展的趋势。文中介绍了单极式光伏系统的拓扑结构和实现最大功率的工作原理,阐述了电导增量法实现MPPT的基本思想。根据光伏系统并网发电拓扑结构,设计了一套新型的实现最大功率跟踪的单极式光伏并网逆变器。逆变器控制部分由DSP实现最大功率跟踪和输出电流跟踪控制,实现了逆变输出电流与电网同步,且高功率因数运行。仿真结果表明,单极式光伏并网逆变系统能准确跟踪太阳能电池最大功率点,并具有较好的稳定性。  相似文献   

10.
金薇 《电子科技》2015,28(3):150-153
在太阳能LED路灯照明系统中,为了提高系统的整体效率,应实时检测太阳能电池的输出功率,保证太阳能电池始终工作在最大功率点上。文中介绍了太阳能电池的输出特性和最大功率点跟踪的原理,分析了常用的固定电压法、扰动观察法、电导增量法等跟踪方法。并针对传统算法中存在的跟踪速度慢、振荡现象等问题,提出了一种新的算法,将固定电压法和扰动观察法结合起来,利用两者各自的优势,实现快速跟踪,进一步提高太阳能电池的利用效率。  相似文献   

11.
The field-programmable gate array (FPGA) based intelligent sun tracking system proposed in this paper uses an NI 9642 controller to integrate the dual-axis sun tracking system with a Maximum Power Point Tracker (MPPT), so as to effectively increase the output power of solar panels. Furthermore, it is provided with multiple intelligent functions, so that the system can start up the sun tracking function automatically in the daytime, and automatically return to its initial position at night. It has a delay function to reduce the electric power consumed by the motor in rotation. Moreover, it can be switched to dual-axis or one-axis sun tracking freely as required by the user, and the solar panel inclination can be operated directly. The dual-axis sun tracking system uses the Particle Swarm Optimization (PSO) method to look for the parameters of the PI controller. The Taguchi Method and Logistic Map are proposed to enhance the steady state convergence of PSO in seeking the optimal solution. The MPPT uses Fuzzy Logic to adjust the step length of the incremental conductance method, so as to remedy the defects in the traditional fixed step method, and to make the solar panel output reach the maximum power point position rapidly and stably.  相似文献   

12.
王晓曦  高静  杨贵杰 《UPS应用》2008,(11):25-30
并网发电系统是太阳能利用的主流趋势,而高性能数字信号处理器的发展也使得一些先进复杂的控制策略应用于光伏并网系统成为可能。文中对系统的控制方案进行了分析,并采用英飞凌公司生产的XC164CM作为系统的控制芯片,通过软件编程完成了系统的并网控制,并解决了最大功率点跟踪、锁相环等关键问题。实验表明文中设计的光伏并网发电系统能够较好地实现逆变并网功能。  相似文献   

13.
光伏并网发电系统是光伏系统发展的趋势,文章根据光伏并网发电系统的特点,设计了一套基于数字信号处理器TNS320F2407控制的单相光伏并网逆变器。分析了系统的结构和控制原理,设计了最大功率点跟踪算法和锁相环的软件设计流程图。实验结果表明并网电流波形良好,逆变器输出的电流基本与电网电压同频同相,并网的功率因数近似为1。  相似文献   

14.
光伏阵列由于输出特性具有非线性,为了提高发电效率,需要对其进行最大功率点跟踪(MPPT)。提出了一种基于改进扰动观察法的最大功率点跟踪器的设计方案,该方案在实现最大功率跟踪的基础上,解决了传统扰动观察法在响应速度与跟踪精度之间的矛盾。通过实验对比引入MPPT前后光伏阵列的输出,验证了方案的可行性与有效性。  相似文献   

15.
基于模糊理论的光伏发电最大功率点跟踪控制策略研究   总被引:3,自引:0,他引:3  
介绍了光伏电池的特性,最大功率点跟踪原理和Boost变换电路,提出了一种基于模糊逻辑控制的最大功率点控制策略,即将光伏电池和Boost电路作为一个整体,通过检测负载功率的变化,来调整控制开关占空比,简化了系统。仿真结果表明,当外部环境发生变化的时候,系统能够迅速跟踪此变化,使系统始终工作在最大功率点附近,并具有较好的稳定性。  相似文献   

16.
Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV system that provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.  相似文献   

17.
本文根据中新天津生态城的气象条件和现有风光互补LED路灯的工作状况,详细阐述了双MPPT(最大功率跟踪)风光互补路灯控制器的实验背景,分析说明了控制器在旧蓄电池的激活和维护功能上的创新,并与之前使用的控制器对比说明其在风力发电及太阳能电池板发电的能量获取上的效率提升。  相似文献   

18.
梁晓鸥  廖俊必  吴瑞 《电子设计工程》2011,19(23):147-149,153
针对野外远离市电供电的系统或者用户的电源供应问题,文中设计了一个智能化太阳能充电用电管理系统,采用MPPT最大功率跟踪方法,控制PWM信号调节BUCK电路的输出,使太阳能电池与蓄电池尽量处在一种相互匹配的状态下,并采用阶段充电方式,采用STC12C5A60S2单片机,集成AD转换功能与PWM信号输出,简化了系统的设计,通过实验,该系统能够有效地提高充电效率以及对蓄电池的保护功能。  相似文献   

19.
Adaptively quadratic (AQua) image interpolation   总被引:9,自引:0,他引:9  
Image interpolation is a key aspect of digital image processing. This paper presents a novel interpolation method based on optimal recovery and adaptively determining the quadratic signal class from the local image behavior. The advantages of the new interpolation method are the ability to interpolate directly by any factor and to model properties of the data acquisition system into the algorithm itself. Through comparisons with other algorithms it is shown that the new interpolation is not only mathematically optimal with respect to the underlying image model, but visually it is very efficient at reducing jagged edges, a place where most other interpolation algorithms fail.  相似文献   

20.
风光互补发电系统的运行需要快速准确地进行最大功率点跟踪,为此综述了风光互补发电系统最大功率点跟踪的几种方法,包括在太阳能电池阵列部分日益成熟、改进和优化策略较多的扰动观察法、电导增量法和恒压控制法;风力发电机部分的叶尖速比控制法、功率信号反馈法、扰动观察法,分别说明了各种跟踪控制方法的优点和不足之处。最后探讨了最大功率点跟踪控制方法的发展思路,对该领域今后的研究方向做了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号