首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
采用改进Hummers法,在不同KMnO4用量下制得了不同氧化程度的系列氧化石墨,并以其为前驱体在N2中经400℃热还原制备了石墨烯。利用XRD、FT-IR、Raman光谱与SEM表征了所得石墨烯的结构、官能团及表面形貌,通过循环伏安和恒流充放电测试研究了氧化石墨的氧化程度对石墨烯电化学性能的影响。结果表明,当KMnO4用量较低(1.0 g)时,前驱体氧化程度较低,不能被剥离;当KMnO4用量较高(≥1.0 g)时,前驱体氧化程度增高,可实现剥离制备石墨烯。随着前驱体氧化程度增加,所制石墨烯堆叠层数与sp2平均尺寸逐渐减小,含氧官能团与缺陷逐渐增多,比容量逐渐增大。  相似文献   

2.
以天然鳞片石墨为原料,采用改进的Hummers法并结合水热法制备TiO2-石墨烯(TiO2-rGO)复合光催化材料。采用TEM,XRD,Raman,FTIR和UV-VIS DRS等方法对其特性进行了表征,以光催化降解亚甲基蓝(MB)研究了石墨烯的引入对TiO2纳米材料光催化性能的影响。结果表明,TiO2纳米颗粒均匀分布在石墨烯表面,并通过Ti—O—C键与石墨烯紧密结合;与石墨烯结合的TiO2在紫外和可见光区吸收明显增强,吸收边发生了红移;当石墨烯的质量分数为10%时,TiO2-rGO复合材料在紫外光和可见光照下,对MB降解120 min的降解率分别达到90.4%和75.9%,其光催化能力与TiO2相比有明显提高。  相似文献   

3.
采用化学气相沉积方法制备了高质量的大面积单层石墨烯,利用拉曼光谱、X射线光电子能谱和原子力显微镜对在空气中热处理前后的石墨烯进行了表征,研究了单层石墨烯在空气中的热稳定性。结果表明,在空气中热处理后,石墨烯的缺陷明显增加,晶粒发生细化,其主要是由于热处理后石墨烯会发生轻微的氧化,表面形成C O及C—OH键。另外,由于石墨烯与衬底的结合形态有所变化,使得热处理后石墨烯表面更趋平整。  相似文献   

4.
氧化石墨烯(GO)的抗菌机制(破坏细菌结构、氧化应激和阻断细菌传输)只从宏观角度论述了 GO整体结构对细菌的作用,但未能说明表面官能团对抗菌的贡献.在不同气氛(N2或O2)下退火对石墨烯进行表面官能团修饰,得到表面官能团组成不同的氮气处理石墨烯(NTG)、氧气处理石墨烯(OTG).平板菌落计数法抗菌测试表明,OTG有更...  相似文献   

5.
比较研究了Si面、C面SiC外延石墨烯以及CVD石墨烯的硝酸掺杂效应。结果表明对C面SiC外延石墨烯和CVD石墨烯,硝酸掺杂显现出p型掺杂特性使其方阻降低,这是由于硝酸与石墨烯氧化还原反应过程中电荷转移所导致;而对于Si面SiC外延石墨烯,硝酸掺杂则显现出n型掺杂特性使其方阻增大,这种异常掺杂效应是由于硝酸与石墨烯发生氧化还原反应释放出的热量使悬挂键吸附的氧脱附,增强了石墨烯与衬底之间的耦合效应,从而使得电子浓度增大,电子的迁移率显著减小。  相似文献   

6.
Ag-石墨烯纳米复合材料的室温制备及其结构分析   总被引:1,自引:0,他引:1  
在室温条件下利用水合肼将氧化石墨烯和AgNO3还原获得Ag-石墨烯纳米复合材料,并利用X射线光电子能谱(XPS),X射线衍射(XRD),X射线能谱(EDX)及高分辨透射电镜(HRTEM)等方法对制备的纳米复合材料进行分析.结果表明:Ag-石墨烯复合材料中石墨烯的含氧官能团数量大幅降低,氧化石墨烯已被还原为石墨烯;Ag纳...  相似文献   

7.
石墨烯是近年来材料、电子和纳米科学中的热门研究课题之一。石墨烯独特的二维结构和原子尺度的平整性使其特别适合利用扫描探针显微镜进行深入研究。利用扫描探针显微镜可以对石墨烯样品的表面的电学、力学和光学等性质进行细致的表征;同时,还可以对石墨烯进行精细的纳米尺度微加工。本文以各种扫描探针显微镜为基础,综述了扫描探针显微镜在石墨烯研究中起到的重要的表征和加工作用。同时,还详细介绍了石墨烯表面研究中的最新进展,并对扫描探针显微镜在石墨烯研究中所具有的潜力进行了探讨。  相似文献   

8.
采用液相混合与水热还原相结合的方法制备了一种颗粒直径在10~20 nm之间,分布均匀的石墨烯与Ag纳米颗粒复合材料。利用透射电子显微技术研究在不同反应阶段时石墨烯或氧化石墨烯表面颗粒的晶格结构与组成成分。研究结果表明,在液相混合阶段Ag+与氧化石墨烯之间发生了氧化还原反应,Ag+还原成为Ag纳米颗粒并附着于氧化石墨烯的表面,颗粒的直径在5 nm以下,分布均一;在水热还原氧化石墨烯阶段,Ag纳米颗粒发生了奥斯瓦尔德熟化现象,较小的Ag纳米颗粒随着水热反应的进行不断的溶解,并在较大的Ag颗粒表面凝聚,使得颗粒的尺寸增加。  相似文献   

9.
对比分析了过硫酸铵(APS)与三氯化铁(FeCl3)两种腐蚀溶液对转移后石墨烯质量的影响.结果表明,采用FeCl3腐蚀溶液转移后的石墨烯表面会引入Fe和Cl离子,而APS腐蚀溶液转移后的石墨烯表面基本未引入杂质.将两种转移到SiO2/Si基底上的石墨烯样品蒸镀100 nm厚的金的源漏电极后分别制成了石墨烯场效应晶体管(GFET),并在室温下对其进行了电学性能测试.测试结果表明,相对于FeCl3腐蚀溶液转移的石墨烯样品制成的器件,采用APS腐蚀溶液转移的石墨烯样品制成器件的狄拉克点从75 V左右降低到了0V左右,载流子迁移率从823 cm2/(V·s)提升到了1 324 cm2/(V·s).因此,采用APS腐蚀溶液转移石墨烯引入杂质更少,制备的器件性能更优越.  相似文献   

10.
刘秀娟  廖乃镘 《半导体光电》2016,37(1):178-180,189
报道了使用石墨烯作为阳极材料的GaN肖特基型紫外探测器。介绍了光敏面为1mm×1mm的新型肖特基紫外探测器的制备过程。并对器件进行了响应光谱、I-V特性测试。器件的响应光谱较为平坦,峰值响应度为0.175A/W;通过对石墨烯进行化学修饰,使峰值响应度增加到0.23A/W。并根据热电子发射理论,计算出了器件掺杂前后的肖特基势垒高度分别为0.477eV和0.882eV,验证了器件性能的提高主要原因是石墨烯功函数的增加。 更多还原  相似文献   

11.
Graphene papers have a potential to overcome the gap from nanoscale graphene to real macroscale applications of graphene. A unique process for preparation of highly conductive graphene thin paper by means of Ar+ ion irradiation of graphene oxide (GO) papers, with carbon/oxygen ratio reduced to 100:1, is presented. The composition of graphene paper in terms of carbon/oxygen ratio and in terms of types of individual oxygen‐containing groups is monitored throughout the process. Angle‐resolved high resolution X‐ray photoelectron spectroscopy helps to investigate the depth profile of carbon and oxygen within reduced GO paper. C/O ratios over 100 on the surface and 40 in bulk material are observed. In order to bring insight to the processes of oxygen removal from GO paper by low energy Ar+ ion bombardment, the gases released during the irradiation are analyzed by mass spectroscopy. It is proven that Ar+ ion beam can be applied as a technique for fabrication of highly reduced graphene papers with high conductivities. Such highly conductive graphene papers have great potential to be used in application for construction of microelectronic and sensor devices.  相似文献   

12.
石墨烯-铜纳米颗粒复合物具有良好的电导率、电催化活性和化学可修饰性,在电化学和生物传感器等方面有广泛的应用前景。本文采用水合肼和KBH4原位化学还原氧化石墨烯和Cu2+混合溶液制备石墨烯-铜纳米颗粒复合物。结果表明:石墨烯-铜纳米颗粒复合物只有在碱性或中性溶液中才能制备成功,水合肼比KBH4的还原效果好。水合肼还原后的石墨烯呈半透明薄纱状,铜纳米颗粒成功地、均匀地沉积在石墨烯纳米片上,独立存在不团聚,大小均匀,边长≈1μm,呈三角形或者六边形纳米片,正六边形纳米片的{111}面、不规则六边形和三角形纳米片的{110}面平行于石墨烯的二维平面。  相似文献   

13.
Graphene‐based metal oxides generally show outstanding electrochemical performance due to the superior properties of graphene. However, the aggregation of active metal oxide nanoparticles on the graphene surface may result in a capacity fading and poor cycle performance. Here, a mesostructured graphene‐based SnO2 composite is prepared through in situ growth of SnO2 particles on the graphene surface using cetyltrimethylammonium bromide as the structure‐directing agent. This novel mesoporous composite inherits the advantages of graphene nanosheets and mesoporous materials and exhibits higher reversible capacity, better cycle performance, and better rate capability compared to pure mesoporous SnO2 and graphene‐based nonporous SnO2. It is concluded that the synergetic effect between graphene and mesostructure benefits the improvement of the electrochemical properties of the hybrid composites. This facile method may offer an attractive alternative approach for preparation of the graphene‐based mesoporous composites as high‐ performance electrodes for lithium‐ion batteries.  相似文献   

14.
The toughening effects of graphene and graphene‐derived materials on thermosetting epoxies are investigated. Graphene materials with various structures and surface functional groups are incorporated into an epoxy resin by in situ polymerization. Graphene oxide (GO) and GO modified with amine‐terminated poly(butadiene‐acrylonitrile) (ATBN) are chosen to improve the dispersion of graphene nanosheets in epoxy and increase their interfacial adhesion. An impressive toughening effect is observed with less than 0.1 wt% graphene. A maximum in toughness at loadings as small as 0.02 wt% or 0.04 wt% is observed for all four types of graphene studied. An epoxy nanocomposite with ATBN‐modified GO shows a 1.5‐fold improvement in fracture toughness and a corresponding 2.4‐fold improvement in fracture energy at 0.04 wt% of graphene loading. At such low loadings, these graphene‐type materials become economically feasible components of nanocomposites. A microcrack mechanism is proposed based on microscopy of the fracture surfaces. Due to the stress concentration by graphene nanosheets, microcracks may be formed to absorb the fracture energy. However, above a certain graphene concentration, the coalescence of microcracks appears to facilitate crack propagation, lowering the fracture toughness. Crack deflection and pinning likely contribute to the slow increase in fracture toughness at higher loadings.  相似文献   

15.
Graphene produced by chemical vapor deposition (CVD) has attracted great interest as a transparent conducting material, due to its extraordinary characteristics such as flexibility, optical transparency, and high conductivity, especially in next‐generation displays. Graphene‐based novel electrodes have the potential to satisfy the important factors for high‐performance flexible organic light‐emitting diodes (OLEDs) in terms of sheet resistance, transmittance, work function, and surface roughness. In this study, flexible and transparent graphene electrode architecture is proposed by adopting a selective defect healing technique for CVD‐grown graphene, which results in several benefits that produce high‐performance devices with excellent stabilities. The proposed architecture, which has a multi‐layer graphene structure treated by a layer‐by‐layer healing process, exhibits significant improvement in sheet resistance with high optical transparency. For improving the charge transport property and mechanical robustness, various defect sites of the CVD‐grown graphene are successfully decorated with gold nanoparticles through a simple electroplating (EP) method. Further, a graphene‐based OLED device that integrates the proposed electrode architecture on flexible substrates is demonstrated. Therefore, this architecture provides a new strategy to fabricate graphene electrode in OLEDs, extending graphene's immense potential as an advanced conductor toward high‐performance, flexible, and transparent displays.  相似文献   

16.
Graphene/MnO2 composites were prepared by hydrazine hydrate-mediated reduction of graphene oxide (GO)/MnO2 at various reduction times to determine the optimal conditions for obtaining materials with excellent electrochemical performance. Variations in the oxygen-containing surface functional groups were observed as the reduction time was varied. These changes were found to affect the electrical conductivity and density of nanoneedle MnO2, which influence the surface area and significantly affect the supercapacitive performance of the composites. Morphological and microstructural characterizations of the as-prepared composites demonstrated that MnO2 was successfully formed on the GO surface and indicated the efficacy of hydrazine hydrate as a reducing agent for GO. The capacitive properties of the graphene/MnO2 electrodes prepared at a reduction time of 28 h (rGO(28)/MnO2) exhibited a low sheet-resistance value as well as a high surface area, resulting in a GO/MnO2 composite with excellent electrochemical performance (371.74 F g−1 at a scan rate of 10 mV s−1). It is anticipated that the formation of MnO2-based nanoneedles on GO surfaces by the demonstrated 28-h hydrazine-reduction protocol is a promising method for supercapacitor electrode fabrication.  相似文献   

17.
Graphene has been gradually studied as a high‐frequency transmission line material owing to high carrier mobility with frequency independence up to a few THz. However, the graphene‐based transmission lines have poor conductivity due to their low carrier concentration. Here, it is observed that the radio frequency (RF) transmission performance could be severely hampered by the defect‐induced scattering, even though the carrier concentration is increased. As a possible solution, the deposition of the amorphous carbon on the graphene is studied in the high‐frequency region up to 110 GHz. The DC resistance is reduced by as much as 60%, and the RF transmission property is also enhanced by 3 dB. Also, the amorphous carbon covered graphene shows stable performance under a harsh environment. These results prove that the carrier concentration control is an effective and a facile method to improve the transmission performance of graphene. It opens up the possibilities of using graphene as interconnects in the ultrahigh‐frequency region.  相似文献   

18.
Graphene‐semiconductor nanocomposites, considered as a kind of most promising photocatalysts, have shown remarkable performance and drawn significant attention in the field of photo‐driven chemical conversion using solar energy, due to the unique physicochemical properties of graphene. The photocatalytic enhancement of graphene‐based nanocomposites is caused by the reduction of the recombination of electron‐hole pairs, the extension of the light absorption range, increase of absorption of light intensity, enhancement of surface active sites, and improvement of chemical stability of photocatalysts. Recent progress in the photocatalysis development of graphene‐based nanocomposites is highlighted and evaluated, focusing on the mechanism of graphene‐enhanced photocatalytic activity, the understanding of electron transport, and the applications of graphene‐based photocatalysts on water splitting, degradation or oxidization of organic contaminants, photoreduction of CO2 into renewable fuels, toxic elimination of heavy metal ions, and antibacterial applications.  相似文献   

19.
Graphene derivatives are promising candidates as electrode materials in supercapacitor cells, therefore, functionalization strategies are pursued to improve their performance. A scalable approach is reported for preparing a covalently and homogenously functionalized graphene with iron tetraaminophthalocyanine (FePc‐NH2) with a high degree of functionalization. This is achieved by exploiting fluorographene's reactivity with the diethyl bromomalonate, producing graphene‐dicarboxylic acid after hydrolysis, which is conjugated with FePc‐NH2. The material exhibits an ultrahigh gravimetric specific capacitance of 960 F g?1 at 1 A g?1 and zero losses upon charging–discharging cycling. The energy density of 59 Wh kg?1 is eminent among supercapacitors operating in aqueous electrolytes with graphene‐based electrode materials. This is attributed to the structural and functional synergy of the covalently bound components, giving rise to a zwitterionic surface with extensive π–π stacking, but not graphene restacking, all being very beneficial for charge and ionic transport. The safety of the proposed system, owing to the benign Na2SO4 aqueous electrolyte, the high capacitance, energy density, and potential of preparing the electrode material on a large‐scale and at low cost make the reported strategy very attractive for development of supercapacitors based on the covalent attachment of suitable molecules onto graphene toward high‐synergy hybrids.  相似文献   

20.

Graphene conductive ink based microstrip line fed circular patch is presented in this paper. The main objective of this work is to replace copper with graphene which is an emerging promising material, in the field of patch antennas with conventional rigid substrates using a simple printing technique and to measure its performance. The prototyped screen printed graphene antenna is perfectly radiating and the return loss, VSWR and gain of the graphene antenna is found to be better than conventional copper antenna. Also, the bandwidth of the graphene antenna is 1.6 times greater than that of the conventional copper antenna on rigid substrate.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号