首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A multi-modal serum profiling platform holds promise for precision diagnosis of diseases. Still, advanced tools are in demand to deliver the multi-modal serum profiling. Herein, a bimodal spectrometric protocol is designed for stoke serum profiling using an alloy  platform, by integrating label-free surface-enhanced Raman spectroscopy (SERS) and laser desorption/ionization mass spectrometry (LDI-MS). The PdAu@Au concave cube with a wide localized surface plasmonic resonance (LSPR) range simultaneously enhances the signals from SERS and LDI-MS, enabling high-throughput co-detection of vibrational and metabolic fingerprints of 0.1 µL serum in 2 min with simple pretreatment. Further, a dual-fingerprints screening model of stroke is constructed, by adaptive machine learning with a programming nonlinear fitting model. The area under the curve are 0.949 (0.917–0.977, 95% confidence interval (CI)) and 0.911 (0.812–0.984, 95% CI), in the discovery and validation cohorts, respectively. Finally, five metabolites are identified that correlated to SERS signals and mapped the relevant pathways. This study features high performance in terms of throughput, speed, sample volume, and accuracy, providing new insight into the construction of multiplexed characterization platforms for precision diagnostic.  相似文献   

2.
The physicochemical properties of nanostructured substrates significantly impact laser desorption/ionization mass spectrometry (LDI-MS) performance. Fundamental understanding of the substrate properties can provide insights into the design and development of an efficient LDI matrix. Herein, a hybrid matrix of nanoporous Au-modified TiO2 nanowires (npAu-TNW) is developed to achieve enhanced LDI-MS performance. Its origin is investigated based on hybrid matrix properties including photo–thermal conversion and electronic band structure. Notably, further improvement is obtained in the npAu-TNW than in the pristine TNW and non-porous Au nanoisland-modified TNW (Au-TNW) hybrid, which is attributed to the laser-induced surface restructuring/melting phenomenon. Noticeable surface restructuring/melting occurs in the npAu by laser exposure through efficient photo–thermal conversion of the highly porous npAu. At this instant of npAu structural changes, internal energy transfer from the npAu to the adsorbed analyte is promoted, which facilitates desorption. Moreover, strain is developed in situ in the TNW adjacent to the restructuring npAu, which distorts the TNW lattice. The strain development reduces recombination rates of charge carriers by introducing shallow trap levels in the bandgap, which enhances the ionization process. Ultimately, the high LDI-MS performance based on the npAu-TNW hybrid matrix is demonstrated by analyzing neurotransmitter.  相似文献   

3.
Currently, most Crohn's disease (CD) patients suffer from serious complications and even surgery due to delayed diagnosis; therefore, point-of-care diagnosis of CD is urgently required. In this work, a covalent organic framework@Au (COF-V@Au) matrix material with excellent laser absorption is prepared, endowing metabolites with great ionization efficiency in laser desorption/ionization mass spectrometry (LDI-MS) analysis. In addition, the COF-V@Au matrix possesses 1093 m2 g−1 of large specific surface area and around 2 nm of average pore size, providing abundant sites and efficient structure for metabolite adsorption. Benefiting from high throughput, high sensitivity, and high ionization efficiency of COF-V@Au assisted LDI-MS, the extraction of serum metabolic fingerprints of CD group and healthy group is implemented. Moreover, the two groups are successfully distinguished with an area under the curve (AUC) value of 0.984 by establishing an orthogonal partial least squares discriminant analysis (OPLS-DA) model of Crohn's patients versus healthy controls. Moreover, the expression of 25 features is determined as the prominent metabolic differences between CD patients and the controls. Furthermore, the terminal ileum and ileocolon subtypes of CD are also distinguished from healthy controls with AUC value of 0.989 and 0.991, respectively. Thus, this COF-V@Au-assisted LDI-MS method is expected to be a clinical diagnostic technology in the future.  相似文献   

4.
As baby boomers age, diabetes mellitus, cancer, osteoarthritis, cardiovascular diseases, and orthopedic disorders are more widespread and the demand for better biomedical devices and functional biomaterials is increasing rapidly. Owing to the good biocompatibility, chemical stability, catalytic efficiency, plasticity, mechanical properties, as well as strength‐to‐weight ratio, titanium dioxide (TiO2) based nanostructured materials are playing important roles in tissue reconstruction and diagnosis of these diseases. Here, recent advance in the research of nanostructured TiO2 based biomaterials pertaining to bone tissue engineering, intravascular stents, drug delivery systems, and biosensors is described.  相似文献   

5.
Blood analysis is crucial for early cancer screening and improving patient survival rates. However, developing an effective strategy for early cancer detection using high-throughput blood analysis is still challenging. Herein, a novel automatic super-hydrophobic platform is developed together with a deep learning (DL)-based label-free serum and surface-enhanced Raman scattering (SERS), along with an automatic high-throughput Raman spectrometer to build an effective point-of-care diagnosis system. A total of 695 high-quality serum SERS spectra are obtained from 203 healthy volunteers, 77 leukemia M5, 94 hepatitis B virus, and 321 breast cancer patients. Serum SERS signals from the normal (n = 183) and patient (n = 443) groups are used to assess the DL model, which classify them with a maximum accuracy of 100%. Furthermore, when SERS is combined with DL, it exhibits excellent diagnostic accuracy (98.6%) for the external held-out test set, indicating that this method can be used to develop a high throughput, rapid, and label-free tool for screening diseases.  相似文献   

6.
A paper-based naked-eye recognition assay with enzyme-encapsulated protein engineered metal–organic framework-derived biominerals is developed for direct quantification of sarcosine in urine samples for screening of prostate cancer individuals. The detection strategy stems from the successful construction of a cascade response model, which involves the introduction of a cascade enzymatic catalytic reaction on Pt nanoparticles (NPs)-loaded porous CeO2 by integrating a sarcosine oxidase as a special recognition unit and a chromogenic substrate as a signal molecule reporter. Pt NPs-loaded CeO2 is subjected to a one-step thermal treatment based on multilayered mesoporous Ce-based metal–organic framework, and the calcined CeO2 exhibits the same distinct porous graded structure. Importantly, introduction of Pt NPs sharply enhances the peroxidase-like activity of CeO2, which is considered to be caused by the difference in the adsorption behavior of hydrogen peroxide on the CeO2 surface and Pt/CeO2 obtained by density functional theory calculations. On the basis of this, the probe is used on a mass-producible paper-based working platform and 3D-printed device to specifically screen for minor differences in sarcosine between urine samples from cancer patients and normal individuals. Enzyme-assisted cascade catalytic reaction can be extended by replacing different recognition units for multiple analytes.  相似文献   

7.
Upconverting NaYF4:Yb3+,Er3+/NaYF4 core‐shell (CS) nanoparticles (NPs) were synthesized by thermal decomposition of lanthanide trifluoroacetate precursors and mixed with TiO2 NPs to fabricate dye‐sensitized solar cells (DSSCs). The CS geometry effectively prevents the capture of electrons because of the surface states and improves photo‐emission. The as‐synthesized CS NPs show upconversion (UC) luminescence, converting near infrared (NIR) light into visible light (450–700 nm), making the photon absorption by the ruthenium‐based dyes (which have little or no absorption in the NIR region) possible. The champion DSSCs fabricated using CS UC NPs (average size = 25 nm) show enhancements of ~12.5% (sensitized with black/N749 dye) and of ~5.5% (sensitized with N719 dye) in overall power conversion efficiency under AM 1.5G illumination. This variation in the enhancement of the DSSC efficiencies for black and N719 dyes is attributed to the difference in the extinction coefficient and the absorption wavelength range of dyes. Incident photon‐to‐current conversion efficiency measurements also evidently showed the photocurrent enhancement in the NIR region of the spectrum because of the UC effect. The results prove that the augmentation in efficiency is primarily due to NIR to visible spectrum modification by the fluorescent UC NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Inherent poor stability of perovskite nanocrystals (NCs) is the main impediment preventing broad applications of the materials. Here, TiO2 shell coated CsPbBr3 core/shell NCs are synthesized through the encapsulation of colloidal CsPbBr3 NCs with titanium precursor, followed by calcination at 300 °C. The nearly monodispersed CsPbBr3/TiO2 core/shell NCs show excellent water stability for at least three months with the size, structure, morphology, and optical properties remaining identical, which represent the most water‐stable inorganic shell passivated perovskite NCs reported to date. In addition, TiO2 shell coating can effectively suppress anion exchange and photodegradation, therefore dramatically improving the chemical stability and photostability of the core CsPbBr3 NCs. More importantly, photoluminescence and (photo)electrochemical characterizations exhibit increased charge separation efficiency due to the electrical conductivity of the TiO2 shell, hence leading to an improved photoelectric activity in water. This study opens new possibilities for optoelectronic and photocatalytic applications of perovskites‐based NCs in aqueous phase.  相似文献   

9.
Using a simple bifunctional bridging linker, nanosized gold and titanium dioxide composites are prepared containing different Au loadings. Linker is synthesized to contain both catechol and thiol moieties to enable binding to the TiO2 and Au surface respectively. Au/TiO2 nanocomposites are prepared using simple synthetic route that allows the control over the amount of Au nanoparticles, a property which plays a significant role in the catalytic activity of hybrid materials. Photocatalytic activity of materials prepared using different TiO2 precursors is investigated using reactive oxygen species sensitive assay based on activation of horseradish peroxidase (HRP) enzyme. Significant increase in catalytic activity is observed for all Au/TiO2 nanocomposites with Au/TiO2 prepared by use of the bridging linker being up to 5.5 times more active than bare commercial TiO2 nanoparticles. In addition to 365 nm light excitation, less energetic 470 nm light, which is more suitable for the use with biological systems, is used to induce photocatalytic activity. Finally, prepared photocatalytic materials are successfully used to exert temporal control over enzymatic activity, a feature which is important for the study of both enzymatic activity and design of novel bio‐sensing platforms.  相似文献   

10.
Recent advances in 2D magnetism have heightened interest in layered magnetic materials due to their potential for spintronics. In particular, layered semiconducting antiferromagnets exhibit intriguing low-dimensional semiconducting behavior with both charge and spin as carrier controls. However, synthesis of these compounds is challenging and remains rare. Here, first-principles based high-throughput search is conducted to screen potentially stable mixed metal phosphorous trichalcogenides (MMP2X6, where M and M are transition metals and X is a chalcogenide) that have a wide range of tunable bandgaps and interesting magnetic properties. Among the potential candidates, a stable semiconducting layered magnetic material, CdFeP2Se6, that exhibits a short-range antiferromagnetic order at TN = 21 K with an indirect bandgap of 2.23 eV is successfully synthesized . This work suggests that high-throughput screening assisted synthesis can be an effective method for layered magnetic materials discovery.  相似文献   

11.
《Organic Electronics》2014,15(5):969-976
TiO2 anode prepared by electrospray (ES) method using dispersion solvents of ethylene glycol (EG) or glycerol enhanced the performance of dye-sensitized solar cells (DSSCs) compared to the conventional solvent of ethanol. TiO2 dispersion in EG or glycerol were found more stable as demonstrated by dynamic light scattering (DLS) experiments. Infrared spectra (IR) revealed that dispersion solvent with more hydroxyl (OH) groups could interact with TiO2 more effectively, leading to higher stability of TiO2 suspension, and enabling higher TiO2 concentration, which are beneficial to mass production by utilizing stable suspension as well as reducing deposition time. When ethanol is used as dispersion solvent, the nozzle is often clogged by TiO2 block due to fast evaporation of ethanol at the nozzle tip. When EG and glycerol are used, this problem does not appear because of their nonvolatile nature. In addition, higher conductivity of EG and glycerol also helps to generate smaller droplet in ES process, thus more uniform TiO2 films is expected. Scanning electron microscope (SEM) study showed that while hierarchically structured TiO2 (HS-TiO2) spheres were formed in TiO2 anode by ES deposition using any one of three solvents, the secondary grain sizes of TiO2 in the EG and glycerol based anodes were bigger. As a result, better DSSC performance was achieved based on TiO2 anode prepared by ES procedure using dispersion solvent of glycerol under high TiO2 concentration.  相似文献   

12.
Endocrine disruptors such as bisphenol A (BPA) are environmental pollutants that interfere with the body's endocrine system because of their structural similarity to natural and synthetic hormones. Due to their strong oxidizing potential to decompose such organic pollutants, colloidal metal oxide photocatalysts have attracted increasing attention for water detoxification. However, achieving both long‐term physical stability and high efficiency simultaneously with such photocatalytic systems poses many challenges. Here a layer‐by‐layer (LbL) deposition approach is reported for immobilizing TiO2 nanoparticles (NPs) on a porous support while maintaining a high catalytic efficiency for photochemical decomposition of BPA. Anatase TiO2 NPs ≈7 nm in diameter self‐assemble in consecutive layers with positively charged polyhedral oligomeric silsesquioxanes on a high surface area, porous electrospun polymer fiber mesh. The TiO2 LbL nanofibers decompose approximately 2.2 mg BPA per mg of TiO2 in 40 h of illumination (AM 1.5G illumination), maintaining first‐order kinetics with a rate constant (k) of 0.15 h?1 for over 40 h. Although the colloidal TiO2 NPs initially show significantly higher photocatalytic activity (k ≈ 0.84 h?1), the rate constant drops to k ≈ 0.07 h?1 after 4 h of operation, seemingly due to particle agglomeration. In the BPA solution treated with the multilayered TiO2 nanofibers for 40 h, the estrogenic activity, based on human breast cancer cell proliferation, is significantly lower than that in the BPA solution treated with colloidal TiO2 NPs under the same conditions. This study demonstrates that water‐based, electrostatic LbL deposition effectively immobilizes and stabilizes TiO2 NPs on electrospun polymer nanofibers for efficient extended photochemical water remediation.  相似文献   

13.
A series of anatase TiO2‐based nanocomposite incorporated with plasma‐modified multi‐walled carbon nanotubes (MWNTs) was prepared by physical blending and shows its capability for efficient electron transport when used as photoanode in dye‐sensitized solar cells (DSSCs). These MWNTs characterized with good dispersal performance were obtained by functionalization technique via in situ plasma treatment and subsequent grafting with maleic anhydride (MA) onto the external walls reported previously. Compared with the conventional DSSCs, the TiO2 film with 1D carbon nanotubes possesses more outstanding ability to transport electrons injected from the excited dye within the device under illumination. As a result, at an optimum addition of 0.3 wt% MWNTs‐MA in TiO2 matrix, the photocurrent–voltage (J–V) characteristics showed a significant increase in the short‐circuit photocurrent (Jsc) of 50%, leading to an increase in overall solar conversion efficiency by a factor of 1.5. Electrochemical impedance spectroscopy analyses reveal that the MWNTs‐MA/TiO2 incur smaller resistances at the photoanode in assembled DSSCs when compared with those in the anatase titania DSSCs. These features suggest that the conducting properties of the MWNTs‐MA within the anodes are crucial for achieving a higher transport rate for photo‐induced electrons in TiO2 layer by exhibiting lower resistance in the porous network and hence retard charge recombination that could result in poor conversion efficiency. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this study, highly mesoporous TiO2 composite photoanodes composed of functional {001}‐faceted TiO2 nanoparticles (NPs) and commercially available 20 nm TiO2 NPs are employed in efficient porphyrin‐sensitized solar cells together with cobalt polypyridyl‐based mediators. Large TiO2 NPs (approximately 50 nm) with exposed {001} facets are prepared using a fast microwave‐assisted hydrothermal (FMAH) method. These unique composite photoanodes favorably mitigate the aggregation of porphyrin on the surface of TiO2 NPs and strongly facilitate the mass transport of cobalt‐polypyridyl‐based electrolytes in the mesoporous structure. Linear sweep voltammetry reveals that the transportation of Co(polypyridyl) redox is a diffusion‐controlled process, which is highly dependent on the porosity of TiO2 films. Electrochemical impedance spectroscopy confirms that the FMAH TiO2 NPs effectively suppress the interfacial charge recombination toward [Co(bpy)3]3+ because of their oxidative {001} facets. In an optimal condition of 40 wt% addition of FMAH TiO2 NPs in the final formula, the power conversion efficiency of the dye‐sensitized cells improves from 8.28% to 9.53% under AM1.5 (1 sun) conditions.  相似文献   

15.
This paper compares the optical, electronic, physical and chemical properties of dielectric thin films that are commonly used to enhance the performance of bulk silicon photovoltaic devices. The standard buried‐contact (BC) solar cell presents a particularly challenging set of criteria, requiring the dielectric film to act as: (i) an anti‐reflection (AR) coating; (ii) a film compatible with surface passivation; (iii) a mask for an electroless metal plating step; (iv) a diffusion barrier for achieving a selective emitter; (v) a film with excellent chemical resistance; (vi) a stable layer during high‐temperature processing. The dielectric coatings reviewed here include thermally grown silicon dioxide (SiO2), silicon nitride deposited by plasma‐enhanced chemical vapour deposition (a‐ SiNx :H) and low‐pressure chemical vapour deposition (Si3N4), silicon oxynitride (SiON), cerium dioxide (CeO2), zinc sulphide (ZnS), and titanium dioxide (TiO2). While TiO2 dielectric coatings exhibit the best optical performance and a simple post‐deposition surface passivation sequence has been developed, they require an additional sacrificial diffusion barrier to survive the heavy groove diffusion step. A‐ SiNx :H affords passivation through its high fixed positive charge density and large hydrogen concentration; however, it is difficult to retain these electronic benefits during lengthy high‐temperature processing. Therefore, for the BC solar cell, Si3N4 films would appear to be the best choice of dielectric films common in industrial use. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
采用溶胶-凝胶旋涂法(Sol-Gel Spin-Coating Method)制备了Al掺杂量为3.00at%,N掺杂量分别为6.00at%,7.00at%,8.00at%和9.00at%的Al/N共掺杂TiO2薄膜样品。对样品测试的结果表明,共掺杂样品依旧保留了TiO2的基本结构,并且Al/N共掺杂样品的晶粒尺寸有不同程度的减小,使样品表面得以修饰,变得更加均匀、平整。共掺杂样品吸收边都出现了不同程度的红移,在紫外光区以及可见光区的吸光性都有所增强。N掺杂量为7.00at%时,(101)衍射峰值最大,峰型最尖锐,所得到的TiO2薄膜的光学性能最好。共掺杂后的样品与本征TiO2相比带隙值都有所减小,且最小值为2.873eV。以上结果表明Al/N共掺杂TiO2薄膜使其光学性能得到了改善。  相似文献   

17.
Titanium dioxide nanotubes were directly fabricated from commercial P25 TiO2 via alkali hydrothermal transformation. The prepared titanate nanotubes were successfully used as an electrode material for dye-sensitized solar cells (DSCs). A metal-free organic dye (indoline dye D102) was used as a sensitizer. The used indoline dye D102 is of high purity (?98%) and high absorption coefficient (67,500 L mol−1 cm−1 at 501 nm). The TiO2 pastes were prepared with PEG (Mw 20,000) and as-made TiO2 nanotubes or P25 powders. Titania thin films were grown by screen printing method. High conversion efficiencies of light to electricity of around 9.8% and 7.6% under illumination of simulated AM1.5 sunlight (100 mW/cm2) were achieved with P25 and TiO2 nanotube cells, respectively. The fill factor of DSCs based on TiO2 nanotubes increased in comparison with that of DSCs based on TiO2 nanoparticles. The electron transport and dye adsorption properties in both titanate nanotube and P25 electrodes were evaluated in terms of photovoltaic characteristics of the fabricated cells. The related mechanisms were discussed. The study provides a promising method for the development of high-efficiency and low-cost DSCs.  相似文献   

18.
The visible light active Ce/F codoped TiO2–ZnO composite films with a bad gap of 1.82 eV were successfully prepared though a simple sol–gel method. Experimental results indicated that the composite films showed excellent photocatalytic performance towards photocatalytic oxidation of organic pollutants including formaldehyde, acid naphthol red (ANR) and methyl green (MG). The catalysts were characterized by photoluminescence (PL) spectra, UV–vis diffraction reflectance absorption spectra (DRS), X-ray diffraction (XRD), differential thermal analysis-thermogravimetry (DTA-TG), field emission scanning electron microscopy (FE-SEM) equipped with energy-dispersive spectroscopy (EDS), and N2 adsorption/desorption isotherms. The DRS and PL spectra results showed that multi-modification not only induced strong visible light absorption but also reduced the recombination rate of electron–hole pairs. The DTA-TG and XRD results indicated that the crystal type of the TiO2-based catalyst was mostly stabilized in anatase. The FE-SEM and BET surface area results revealed that the nanocrystalline Ce/F codoped TiO2–ZnO composite samples with the larger specific surface area were composed of smaller nanoparticles compared to pure TiO2. The mechanism of the enhanced photocatalytic activity was discussed in this study.  相似文献   

19.
The microstructures of photo‐ and counter‐electrodes play critical roles in the performance of dye‐sensitized solar cells (DSSCs). In particular, various interfaces, such as fluorinated‐tin oxide (FTO)/TiO2, TiO2/TiO2, and TiO2/electrolyte, in DSSCs significantly affect the final power conversion efficiency (PCE). However, research has generally focused more on the design of various nanostructured semiconducting materials with emphasis on optimizing chemical or/and physical properties, and less on these interface functionalizations for performance improvement. This work explores a new application of graphene to modify the interface of FTO/TiO2 to suppress charge recombination. In combination with interfaces functionalization of TiO2/TiO2 for low charge‐transport resistance and high charge‐transfer rate, the final PCE of DSSC is remarkably improved from 5.80% to 8.13%, achieving the highest efficiency in comparison to reported graphene/TiO2‐based DSSCs. The method of using graphene to functionalize the surface of FTO substrate provides a better alternative method to the conventional pre‐treatment through hydrolyzing TiCl4 and an approach to reduce the adverse effect of microstructural defect of conducting glass substrate for electronic devices.  相似文献   

20.
Well-crystallized Fe2O3-modified TiO2 nanoparticles are prepared by a hydrothermal method and were successfully used as the photoanode of dye-sensitized solar cell (DSSC). Structural, optical and thermal characterizations were carried out by SEM, XRD, AFM, EDAX, DTG, TG and UV–vis spectroscopy. We show that the solar conversion efficiency, incident photocurrent efficiency (IPCE) and fill factor (FF) of Fe2O3-modified TiO2 are significantly increased, about 40%, compared those of to bare TiO2. DSSC shows power conversion efficiency of 7.27% based on Fe2O3-modified TiO2 while TiO2 anatase shows 5.10% solar conversion efficiency. The high improvement in cell performance is attributed to the enhanced light harvesting and high specific surface area for adsorbing more dye molecules in Fe2O3-modified TiO2 nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号