首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于聚类支持向量机的入侵检测算法   总被引:2,自引:0,他引:2  
针对支持向量机应用到入侵检测中训练时间长的特点,提出了一种基于聚类的支持向量机的入侵检测算法。该方法可以对训练数据进行剪枝,以靠近判别边界的聚类中心集合作为有效的训练样本集合对支持向量机进行训练,减少了样本的训练时间,提高了算法的效率。实验结果表明该方法对入侵检测是有效的。  相似文献   

2.
陶坚  喻擎苍   《电子器件》2007,30(6):2226-2228
SVM(支持向量机)方法被看作是对传统学习分类方法的一个好的替代,特别在小样本、非线性情况下,具有较好的泛化性能.本文简要分析了当前的几种入侵检测方法,重点介绍了SVM的学习算法,提出了将SVM用于入侵检测系统的方法.通过Matlab仿真实验,结果表明,运用SVM方法检测入侵,可以达到较高的准确检测率,是一种有效的入侵检测手段.  相似文献   

3.
针对支持向量机在大规模样本学习时,学习速度慢,需要存储空间大等问题,提出了一种基于层次聚类的支持向量机训练算法,即在标准SVM向量算法中加入CURE聚类算法。该方法首先通过聚类方法从簇中选择分散的对象,根据一个收缩因子收缩或移动它们,从而产生最有可能成为支持向量的一组向量组成训练子集,接下来再用SVM训练方法构建一个最优SVM分类器。实验证明,该算法使SVM训练时间大为缩短,在不影响精确度的前提下使算法的效率得到大幅度的提高。  相似文献   

4.
云检测是遥感图像处理和应用的前提,针对遥感图像云检测的准确率容易受到薄云及似云地物影响的挑战,提出一种结合遥感影像灰度、纹理和频率特征的层次支持向量机云检测算法.该方法首先采用简单线性迭代聚类算法将遥感图像分割为像素块,再采用一种层次支持向量机分类器对遥感图像以像素块为单位进行云检测.层次支持向量机的第一层将像素块初步...  相似文献   

5.
针对。感卫星图像的云检测,提出了基于最小化支持向量数分类器的云检测方案,解决传统分类器训练样本多、易陷入局部最优的问题。使用该分类器对QuickBird高分辨率。感图像进行云检测,检测正确率达99%以上。实验表明:在确定分类器内部结构参数过程中,与传统的交叉验证法相比,基于支持向量数的方法不仅能够准确预测分类器推广性能的变化趋势,从而确立最优化的参数组合,并且实现简单,大大减少了计算的复杂度。与传统的BP神经网络相比,该方法所需训练样本少,分类性能好。  相似文献   

6.
一种基于密度法的支持向量预选取算法   总被引:1,自引:0,他引:1  
针对大规模数据集的分类问题,支持向量机的训练成为一个难题。预先选取支持向量用于支持向量机的训练是解决这一难题的思路之一,但其的选择非常困难。本文提出了一种基于密度法的支持向量预选取方法。该方法不需要事先判定训练样本是否线性可分,具有较强的抗击孤立点干扰的能力,并且计算简单,易于实现。实验仿真证明这种方法是有效的。  相似文献   

7.
根据粗糙集理论的边界区域和V-支持向量机的优点对支持向量聚类算法进行改进。使用核函数进行特征空间的映射,发现最小粗糙球的包络点。根据上近似集与下近似集,定义粗糙球的内半径r和外半径为R。数据点映射若位于下近似区,则属于一个确定的聚类;若边界的点位于上近似区,属于不确定的聚类,位于球体外的点属于孤立点。实验结果表明,该聚类算法可以不需要额外的计算开销,能够解决任意形状的软聚类问题,有效地处理边界点。  相似文献   

8.
基于支持向量聚类的多分量线性调频信号检测   总被引:1,自引:0,他引:1       下载免费PDF全文
为了精确获取多分量线性调频(Linear FM, LFM)信号中分量的数量,该文引入支持向量聚类(Support Vector Clustering, SVC)算法对LFM信号的Radon-时频分析结果进行聚类分析,完成多个分量的检测;并通过减少SVC算法中输入集样本数量和改进聚类标识方法为直接聚类标识法,提高了SVC算法的计算效率。仿真结果表明:在较低信噪比条件下,Radon-时频分析和SVC结合的方法可有效地检测多分量LFM信号中分量数和进行参数估计。  相似文献   

9.
多任务学习是一种利用其它任务来提高任务泛化性能的学习范式.孪生支持向量聚类是一种功能强大的聚类方法,为了提高孪生支持向量聚类模型的聚类性能,受多任务学习的启发,将模型扩展到多任务学习场景,提出多任务孪生支持向量聚类算法,并通过求解一系列二次规划问题,确定聚类中心平面.同时学习多个相关任务的经验和理论表明,相对于独立学习...  相似文献   

10.
不同于以往温度、应变与光纤Bragg光栅(FBG)峰值波长偏移量之间的数学模型,本文提出利用支持向量机(SVM,support vector machine)补偿温度的影响,并以FBG压力传感器为例,利用标定的压力传感器数据对SVM模型的惩罚系数C和径向基核函数(RBF)核参数γ进行优化,得到SVM温度补偿模型,选择核参数γ为100、惩罚系数C为16。经过补偿后,压力传感器的零位温度系数和灵敏度温度系数由补偿前的34.5%/℃和34.2%/℃减小到1.7×10-5%/℃和7.7×10-5/%/℃。充分说明,利用SVM补偿温度对FBG压力传感器的影响是有效的。  相似文献   

11.
高光谱图像分类的全面加权方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
像元分类是高光谱数据分析的最基本、最重要内容之一,而基于支持向量机(SVM)的分类方法以其高效性得以广泛使用.原始的SVM分类模型中并没有体现出样本、特征、类别对于分类或分析的不同重要性,从而影响了处理效果.为此,将各样本偏离其类中心的距离映射为样本加权系数;将类内散度矩阵应用于特征加权方法;将SVM方程系统中的单位矩阵对角元素加以调整来完成类别加权.不同加权方法既可以单独使用也可以联合使用.实验表明,所提出的加权方法有助于进一步提高高光谱图像的分类效果.  相似文献   

12.
基于SVM实现人眼注视与否的探知   总被引:1,自引:2,他引:1  
采用基于统计学习理论的支持向量机(SVM,support vector machine)方法对人眼注视与否进行探知。根据结构风险最小化(SRM,structural risk minimization)准则,在最小化已知样本点误差的同时,尽量缩小模型预测误差的上界,改善了模型的泛化能力。实验结果显示,在训练样本数有限的情况下,学习后模型对测试样本的正确识别率达到100%,比此前采用其它方法所获得的识别结果识别率更高,训练及识别过程速度更快,基本上能够满足实时性要求,也更接近人类视觉对注视与否的探知的特点。  相似文献   

13.
基于流量总时延最小的并行LSP自适应流量分配   总被引:6,自引:0,他引:6  
MPLS的引入使IP网络的流量工程成为可能.如何平衡两个标记交换路由器的多条并行显式标记交换路径上的网络流量,从而达到避免拥塞和优化网络性能的目的,是流量工程研究的一个重要课题.本文指出流量总时延最小是最有价值和最实用的流量工程优化目标,通过分析平均分组时延和网络负载的约束关系,证明了优化解的存在,解出了其数学结果,提出了一种自适应流量分配新方法,理论分析和仿真结果都表明该方法具有简单、快速、收敛性强等优点.  相似文献   

14.
近似支持向量机(PSVM)在支持向量机(SVM)的基础上,变不等式约束为等式约束,只需求解一组线性等式,避免了求解二次规划问题,使得算法更快、更简洁,在两类分类问题中取得较好应用.探讨了3种基于两类PSVM的多类分类方法,在标准数据集上进行了验证,并与标准SVM的结果进行了比较,结论表明3种PSVM多类分类方法能取得较好的分类性能.  相似文献   

15.
压缩域中基于支持向量机的镜头边界检测算法   总被引:1,自引:0,他引:1  
曹建荣  蔡安妮 《电子学报》2008,36(1):203-208
针对如何进一步提高镜头边界检测精度问题,本文提出了一个基于支持向量机SVM (Support Vector Machine)的镜头边界检测算法.该算法利用视频压缩域中特征,如宏块类型,帧间对应宏块DC系数差和帧类型将视频帧分为发生切变的帧、发生渐变的帧和非镜头变换帧三类,从而实现视频的镜头分割.实验结果表明该算法对摄像机的运动和大物体的进入具有很好的鲁棒性,且没有大多数算法中阈值选择的困难,将我们的算法与2001 TREC评估中最佳指标进行了比较,在综合度量查全率和查准率的性能指标F1上,比2001 TREC评估中最佳指标高约8%.  相似文献   

16.
基于对图像拼接技术的分析,提出了一种基于马尔科夫模型与Hilbert-Huang变换(HHT)的图像拼接盲检测算法。该算法计算图像DCT域上的马尔科夫转移概率矩阵,同时对图像进行Hilbert-Huang分析,得到两类特征值集,并通过计算相关系数矩阵分析了两者之间的相关性,最后使用支持向量机进行训练与分类。实验结果表明,相对于已有文献,该算法具有较高的检测准确率。  相似文献   

17.
An eye detection method for facial images using Zernike moments with a support vector machine (SVM) is proposed. Eye/non‐eye patterns are represented in terms of the magnitude of Zernike moments and then classified by the SVM. Due to the rotation‐invariant characteristics of the magnitude of Zernike moments, the method is robust against rotation, which is demonstrated using rotated images from the ORL database. Experiments with TV drama videos showed that the proposed method achieved a 94.6% detection rate, which is a higher performance level than that achievable by the method that uses gray values with an SVM.  相似文献   

18.
基于支持向量机的多类分类研究   总被引:1,自引:0,他引:1  
牛兴霞  杨奎河 《信息技术》2006,30(11):19-23
现今流行的分类方法的重要基础是传统的统计学,前提是要有足够的样本,当样本数目有限时容易出现过学习的问题,导致分类效果不理想。引入支持向量机方法,它基于统计学习理论,采用了结构风险最小化原则代替经验风险最小化原则,较好的解决了小样本学习的问题;又由于采用了核函数思想,把非线性空间的问题转换到线性空间,降低了算法的复杂度。对其相关内容包括优化算法及多类分类问题的解决进行了研究,最后用一个实例说明了该方法的可行性和有效性。  相似文献   

19.
基于离散曲波变换和支持向量机的掌纹识别方法   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于离散曲波变换和支持向量机的掌纹识别方法.首先将所有掌纹样本图像和测试图像通过基于Wrapping的快速离散曲波变换进行分解,从而获得不同尺度、不同角度的曲波变换系数;掌纹重要特征信息包含在曲波变换分解系数中的低频系数中,因此将分解系数变换形成特征向量后作为特征参数送入支持向量机中进行学习训练;最后将训练好的支持向量机用于掌纹分类.基于香港理工大学Palmprint掌纹数据库进行了大量实验,实验结果证实所提方法的识别正确率相对优于小波变换方法和其它几种经典方法.  相似文献   

20.
最小二乘支持向量机用于时间序列叶面积指数预测   总被引:1,自引:2,他引:1       下载免费PDF全文
遥感反演的叶面积指数(LAI)时间序列被广泛应用于气候模拟、作物长势监测等研究。但遥感数据受天气等因素影响,时间序列的LAI 数据存在缺失。支持向量机(SVM)是一种有效的数据分类和回归预测工具,而最小二乘支持向量机(LS-SVM)是对SVM 的有效改进。以西藏那曲县为例,使用2003-2011 年MODIS LAI 产品,分别用LS-SVM 和SVM 两种方法对研究区域2011 年LAI 时间序列进行预测,并用MODIS 原始LAI 以及部分地面实验样点值进行验证。结果表明,基于LS-SVM 的LAI 时间序列预测算法的精度比基于SVM 的算法高,从而证明LS-SVM 方法能够弥补遥感反演时间序列LAI 数据的缺失问题,对提高时间序列的LAI 遥感产品质量具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号