首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A novel aminoborane-based host material, 9-(dimesitylboryl)-9′-phenyl-9H, 9′H-3,3′-bicarbazole (BCzBMes) was developed for blue and white phosphorescent OLEDs (PHOLEDs). The thermal, photophysical and electrochemical properties were systematically investigated. BCzBMes not only has a high triplet energy but also shows a bipolar behavior. To validate the superior properties of BCzBMes, blue and white PHOLEDs were fabricated using BCzBMes as a bipolar host material. A blue PHOLED containing Bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrPic) as a dopant exhibited excellent performance with a maximum external quantum efficiency (EQE) of 16.7%. In particular, the blue PHOLED exhibited an extraordinary low efficiency roll-off of 10.1% at a brightness of 5000 cd/m2. Meanwhile, an all-phosphor near-white device hosted by BCzBMes was also fabricated, and a high EQE of 18.8% was achieved. This excellent performance suggests that BCzBMes is a potential bipolar host material for the PHOLEDs.  相似文献   

2.
Phosphorescent organic light-emitting devices (PHOLEDs) with high efficiency and low efficiency roll-off were fabricated. The emissive layer was composed of a thermally activated delayed fluorescence (TADF) material 4,5-bis(carbazol-9-yl)-1,2-dicyanobenzene (2CzPN) as host and an orange iridium complex bis(4-tert-butyl-2-phenylbenzothiozolato-N,C2′)iridium(III)(acetylacetonate) [(tbt)2Ir(acac)] as dopant. At a low dopant concentration of 1 wt%, a PHOLED without light extraction optimization achieved a maximum power efficiency of 42.1 lm/W, a luminance efficiency of 77.9 cd/A and an external quantum efficiency (EQE) of 26.8%, respectively. Meanwhile, the EQE maintained 26.6% at 1000 cd/m2 and 25.8% at 5000 cd/m2, respectively. Moreover, a critical current density of 300 mA/cm2 was realized, indicating significantly improved efficiency roll-off. The efficient utilization of triplet excitons on 2CzPN for phosphorescence via reverse inter-system crossing of 2CzPN followed by Fӧrster resonance energy transfer from 2CzPN to (tbt)2Ir(acac) is responsible for the superior performance.  相似文献   

3.
In this paper, we developed a series of novel arylamino-containing spiro triplet state host materials for green and blue phosphorescent emitters. With high enough energy gap and compatible HOMO, LUMO levels, we demonstrated the green PHOLED with a low driving voltage of 2.5 V and a high power efficiency of 38.5 lm/W. We also demonstrated blue PHOLED with a very low driving voltage of 3.0 V and a current efficiency of 9.2 cd/A.   相似文献   

4.
《Organic Electronics》2014,15(7):1312-1316
By incorporating prospective materials for blue PHOLED emissive layers into model OLEDs, we have investigated how hole transport in a prototypical blue phosphorescent emitter, FIrpic (bis(4,6-difluorophenyl-pyridinato-N,C2) picolinate Iridium) doped mCBP (4′-bis(3-methylcarbazol-9-yl)-2,2′-biphenyl), can impact PHOLED device operational stability. We found the host mCBP to be stable in supporting hole transport, but unstable with respect to electron–hole recombination. As a dopant, FIrpic was found to be unstable with respect to both hole transport and charge recombination processes. Our results indicate that FIrpic doped mCBP is unsuitable for use as an emissive layer in OLED devices and we provide a general strategy to screen materials and better understand their stability.  相似文献   

5.
Three kinds of red electroluminescent (EL) polymers based on polyfluorene as blue host and 2,1,3‐benzothiadiazole derivatives with different emission wavelengths as red dopant units on the side chain are designed and synthesized. The influence of the photoluminescence (PL) efficiencies and emission wavelengths of red dopants on the EL efficiencies and color purities of the resulting polyfluorene copolymers of dopant/host system is investigated by adjusting the electron donating ability of the donor units in D‐π‐A‐D typed 2,1,3‐benzothiadiazole derivatives. The devices of these red‐emitting polymers realize remarkable EL efficiency/color purity trade‐offs. The single‐layer devices with the configuration of ITO/PEDOT:PSS/Polymer/Ca/Al show pure red emission at 624 nm with a luminous efficiency of 3.83 cd A?1 and CIE of (0.63, 0.35) for PFR1, saturated red emission at 636 nm with a luminous efficiency of 2.29 cd A?1 and CIE of (0.64, 0.33) for PFR2, respectively. By introduction of an additional electron injection layer PF‐EP(Ethanol soluble phosphonate‐functionalized polyfluorene), high performance pure and saturated red emission two‐layer devices (ITO/PEDOT:PSS/Polymer/PF‐EP/LiF/Al) were achieved with maximum luminous efficiencies of 5.50 cd A?1 and CIE of (0.62, 0.35) for PFR1, 3.10 cd A?1 and CIE of (0.63, 0.33) for PFR2, respectively, which are the best results for pure and saturated fluorescent red EL polymers reported so far.  相似文献   

6.
A series of novel binary and ternary components of the exciplexes as the cohosts for a red thermally activated delayed fluorescence (TADF) dopant were investigated in the solution-processed OLEDs, where 1,3-bis[(4-tert-butylphenyl)-1,3,4-oxadiazolyl] phenylene (OXD-7) as a conventional acceptor, and 1,3-bis(carbazol-9-yl)benzene (mCP) as a conventional donor were respectively mixed with two molecules containing spirofluorene and s-triazine moieties (TDP-TRZ or DTDP-TRZ) with excellent thermal stability and high electron mobility as the second acceptors. Particularly, the power efficiencies of the devices with the exciplexes are generally enhanced via this strategy of host engineering. The designed devices could achieve a percentage increase of 179% in the power efficiency, compared with the reference device with single-component host, mainly owing to the synergistic effects of electron block, balanced injection of charge carriers and efficient exciton harvesting. The working mechanism of energy transfer in binary and ternary components of the exciplexes hosted red TADF OLEDs is studied. This work provides a novel device design philosophy with the multiple exciplexes cohosts for solution-processed TADF OLEDs, which would help to simplify the fabrication processing, lower the cost, and popularize OLED technology.  相似文献   

7.
High efficiency red phosphorescent organic light emitting diode (PHOLED) employing co-doped green emitting molecule bis(2-phenylpyridine)(acetylacetonate)iridium(III) [Ir(ppy)2(acac)] and red emitting molecule bis(2-methyldibenzo[f,h]quinoxaline)(acetylacetonate)iridium(III) [Ir(MDQ)2(acac)] into 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host in a simplified wide-bandgap platform is demonstrated. The green molecule is shown to function as an exciton harvester that traps carriers to form excitons that are then efficiently transferred to the Ir(MDQ)2(acac) by triplet-to-triplet Dexter energy transfer, thereby significantly enhancing red emission. In particular, a maximum current efficiency of 37.0 cd/A and external quantum efficiency (EQE) of 24.8% have been achieved without additional out-coupling enhancements. Moreover, a low efficiency roll-off with the EQE remaining as high as 20.8% at a high luminance of 5000 cd/m2 is observed.  相似文献   

8.
Organic optoelectronics calls for materials combining bright luminescence and efficient charge transport. The former is readily achieved in isolated molecules, while the latter requires strong molecular aggregation, which usually quenches luminescence. This hurdle is generally resolved by doping the host material with highly luminescent molecules collecting the excitation energy from the host. Here, a novel concept of molecular self‐doping is introduced in which a higher luminescent dopant emerges as a minute‐amount byproduct during the host material synthesis. As a one‐stage process, self‐doping is more advantageous than widely used external doping. The concept is proved on thiophene–phenylene cooligomers (TPCO) consisting of four (host) and six (dopant) conjugated rings. It is shown that <1% self‐doping doubles the photoluminescence in the TPCO single crystals, while not affecting much their charge transport properties. The Monte‐Carlo modeling of photoluminescence dynamics reveals that host–dopant energy transfer is controlled by both excitonic transport in the host and host–dopant Förster resonant energy transfer. The self‐doping concept is further broadened to a variety of conjugated oligomers synthesized via Suzuki, Kumada, and Stille crosscoupling reactions. It is concluded that self‐doping combined with improved excitonic transport and host–dopant energy transfer is a promising route to highly luminescent semiconducting organic single crystals for optoelectronics.  相似文献   

9.
A high efficiency soluble green phosphorescent organic light-emitting diode (PHOLED) was developed using a double layer emitting structure fabricated by a stamp transfer printing process. One green emitting layer with a hole transport type host material was coated on a hole transport layer and the other green emitting layer with an electron transport type host material was stamp transfer printed on the green emitting layer. The efficiency of solution processed green PHOLEDs was more than quadrupled using the double layer emitting structure fabricated by the stamp transfer printing method.  相似文献   

10.
In this paper, we report color stable phosphorescent white organic light-emitting diodes (OLEDs) based on a double emissive layer (EML) structure composed of blue and red/green phosphorescent units. Deep hole trapping situation of red and green dopants at the red/green EML could induce less voltage dependent white spectral characteristics by restricting the change of exciton generation zone. A wide band-gap host material, 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy), was used for achieving such deep-trap generation. Fabricated phosphorescent white OLED shows a slight color coordinate change of (?0.002, +0.002) from 1000 cd/m2 to 5000 cd/m2 with power efficiency of 38.7 lm/W and current efficiency of 46.4 cd/A at 1000 cd/m2. In addition, negligible color changes were observed by delaying red dopant saturation time using optimum red dopant concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号