首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
保偏光纤激光器的实验研究   总被引:1,自引:0,他引:1  
任广军  姚建铨  王鹏  张强 《中国激光》2007,34(9):1208-1211
从耦合波方程出发,对掺钕光纤激光器输出功率沿光纤的分布进行了数值模拟,并对掺钕光纤激光器所需要光纤的最佳长度进行了分析.以808 nm半导体激光器为抽运源,掺钕双包层保偏光纤为增益介质,使用对808 nm高透,1060 nm高反的二色镜和垂直切割的光纤端面(4%的菲涅耳反射)构成法布里-珀罗(F-P)光学谐振腔,对保偏光纤激光器进行了实验研究.实验中测量了掺钕光纤的荧光光谱,并就不同抽运电流对激光器输出功率和偏振特性进行了研究,在波长1060 nm处得到了7.5 W的激光输出,斜率效率为56%.  相似文献   

2.
3.
采用连续运转Ar+激光器5145 Å输出波长光作为泵浦源,采取端泵浦的平凹光学谐振腔结构,用光学斩波器作为Q开关,建立了掺钕单模光纤激光器的调Q实验装置,对这种激光器的调Q特性进行了实验研究和讨论。  相似文献   

4.
利用主振荡功率放大(MOPA)结构的光纤激光器倍频KTP晶体,通过移动晶体改变入射激光功率密度的方法研究了KTP倍频晶体的损伤特点.实验显示在重复频率为20kHz的光纤激光器作用下KTP晶体损伤阈值在24 MW/cm 2左右,并观察到损伤晶体都在出光面处被击裂;从光纤激光器的线宽、重复频率等方面对实验结果作了分析,对绿光在KTP晶体损伤中的作用作了阐述;最后给出了提高晶体激光损伤阈值的方法.  相似文献   

5.
基于保偏光纤光栅的对称腔多波长掺铒光纤激光器   总被引:2,自引:0,他引:2  
提出一种基于保偏光纤布拉格光栅(PMFBG)的对称腔多波长掺铒光纤激光器(EDFL).使用直接在保偏光敏光纤(PMPF)上写入的光纤布拉格光栅作为波长选择器件,利用激光谐振腔中的偏振烧孔效应(PHB),通过调整偏振控制器(PC),在室温下得到稳定的四波长激光运转.输出激光的边模抑制比(SMSR)达到50 dB,约一个半小时重复扫描时间内对应于每一波长的振幅变化差异均小于0.8 dB.  相似文献   

6.
采用KTP晶体对掺Yb3+脉冲光纤激光器输出的1064 nm脉冲激光进行腔外倍频,当红外平均输入功率为10 W,重复频率为20kHz,脉冲宽度为169+4 ns时,获得了532 nm,平均功率为1780 mW,脉冲宽度为121+4 ns的绿光输出,倍频转换效率为17.8%.  相似文献   

7.
优质KTP晶体腔内有效倍频效率及损耗的研究   总被引:3,自引:0,他引:3  
本文报道一种高效内倍频Nd:YVO4/KTP激光器的输出特性以及优质KTP晶体腔内有效倍频效率和损耗的研究结果。在泵浦功率为19W时获得了5.85W的连续绿光输出,相应的光-光转换效率为30.8%。研究表明,优质KTP晶体腔内有效倍频效率超过70%,最高达到74.1%;而其损耗仅为0.007cm^-1。  相似文献   

8.
基于保偏光纤光栅的双波长掺铒光纤激光器   总被引:5,自引:6,他引:5  
提出了一种基于保偏光纤(PMF)中布拉格光栅的波长间隔可调的可开关双波长掺铒光纤激光器(EDFL)。由于和光纤布拉格光栅(FBG)两个反射峰对应的不同波长的两纵模在偏振态上是止交的.从而在均匀展宽的掺铒光纤中增强了偏振烧孔(PHB)效应。这种偏振烧孔效应大大减小了不同模式之间的竞争,因此可在室温下得到稳定的双波长振荡。另一方面。通过调整偏振控制器的状态.即改变腔内的双折射状念,光纤光栅的两个反射峰强度会发生变化。基于以上原理。便形成了对激光振荡模式的选择.即通过调整偏振控制器的状态可使激光器工作在稳定的双波长状态或在两波长之间转换。通过改变加在光纤光栅上侧向应力的大小和方向.可有效控制双波长激射的波长间隔.实验中得到了0.2~1.1nm的可调间隔。  相似文献   

9.
环形腔掺铒光纤激光器的实验研究   总被引:3,自引:0,他引:3  
邱昆 《中国激光》1994,21(12):937-939
利用掺饵光纤和环形腔结构,在980nm半导体激光器泵浦下,获得了1.56μm波长的光纤激光器输出。激光器的阈值泵浦功率为5.2mW。具有很好的线性输出特性。  相似文献   

10.
改性KTP晶体、三镜折叠腔内倍频研究   总被引:1,自引:0,他引:1  
本文利用改性KTP晶体,进行了纯连续激光倍频实验。根据光束传输矩阵,用计算机数值法计算了三镜折叠腔不同谐振腔参数所对应的稳定区,对Nd:YAG/KTP进行腔内倍频,实验获得了3-5W 纯连续绿色激光输出。其实验结果与理论计算值基本相符。  相似文献   

11.
为了研究双块磷酸氧钛钾(KTiOPO4,KTP)晶体串接倍频对于提高绿光倍频激光器的转换效率的作用,采用长度分别为6mm,8mm和15mm的3块KTP晶体两两串接组合进行了实验验证,绘制了单块晶体倍频和双块晶体串接倍频时的转换效率曲线,并对其进行了比较分析。结果表明,基频光功率密度从520MW/cm2到750MW/cm2时,双块KTP晶体正交串接倍频不仅比双块KTP晶体平行串接倍频的转换效率高近10%,而且比长度是两块晶体之和的单块长KTP晶体的倍频转换效率高近30%。这一实验结果对于提高绿光倍频激光器的转换效率有一定的意义。  相似文献   

12.
刘波波  邓泽怀 《电子科技》2014,27(3):133-135,139
掺铥光纤激光器输出的2 μm波段在医疗、激光雷达、遥感测控和光参量振荡方面有着广泛应用,目前已实现千瓦级的激光输出。文中主要介绍了掺铥光纤激光器的基本结构及工作原理,并综述和分析了国内外掺铥光纤激光器的研究进展,并展望了掺铥光纤激光器的发展。  相似文献   

13.
介绍了两种Nd∶YAG倍频的方法 :折叠腔腔内倍频和腔外环形腔倍频 ,并着重对腔外环形腔倍频进行了研究 ,这种方法在 1kHz调QNd∶YAG激光 5 0W平均功率输入的情况下 ,获得了 1 7 5W平均功率的绿光输出 ,光 光转换效率达 35 % ,较好地解决了激光微细聚焦问题 ,更适用于激光微成型  相似文献   

14.
8.1W全固态准连续红光Nd∶YAG激光器   总被引:1,自引:0,他引:1  
报道了利用Ⅱ类临界相位匹配的KTP晶体(相位匹配角选为θ=599°,=0°)对Nd∶YAG在13μm附近的振荡进行腔内倍频,产生高功率准连续红光激光的实验结果。激光器使用了一个连续运转的高功率激光二极管(LD)侧面抽运组件(组件内由30个20W的二极管阵列呈三角形阵列分布抽运一根Nd∶YAG圆棒),使用声光调Q技术实现高重复频率输出,并选用了平凹直腔的腔体结构。对该激光器的基频(13μm波长)调Q和倍频红光的功率输出特性及光谱特性进行了研究。在LD抽运功率453W时产生了最大输出功率81W的准连续红光激光,测量了此时的M2值并给出了光强分布图。  相似文献   

15.
针对基于重叠因子模型的速率方程不能分析粒子数空间分布的情况,依据双包层掺Yb3+光纤激光器中,内包层光强近似于均匀分布、而纤芯中光场近似于高斯分布的特点,建立了基于光强分布的速率方程。依据该方程,分析了正向、反向和双向泵浦方式下,Yb3+上能级粒子数的空间分布。结果表明:沿光纤轴向,不同的泵浦方式导致上能级粒子数呈现不同的分布特征;而沿光纤径向,无论采用何种泵浦方式,上能级粒子数都呈现中间低、两端高的抛物线分布结构。  相似文献   

16.
文中对非线性光学晶体KTiOPO4(KTP)和β BaB2O4(BBO)在窄脉宽300ps,峰值功率2×109W激光系统中倍频技术进行了实验研究和理论分析,在基频光(1064nm)能量为550mJ时,KTiOPO4的二倍频效率达到60%;β BaB2O4二倍频效率达到40%。并对KTiOPO4进行了损伤阈值实验,得出其损伤阈值为1.13GW/cm2,这对使用KTP晶体在皮秒级脉宽时获得最佳非线性转换而可能实现的功率密度提供了参考依据。  相似文献   

17.
LD泵浦的1.34 μm Nd:YVO4晶体高效率激光器   总被引:8,自引:1,他引:8  
报道了光纤耦合输出大功率LD模块泵浦的1.34 μm Nd:YVO4晶体高效率激光器,在泵浦功率为6.6 W时,激光输出达2.27 W,光-光转换效率为34.4%,斜效率达45%.利用KTP晶体进行腔内倍频,得到70 mW的0.67 μm激光输出.  相似文献   

18.
为了实现高效、紧凑、窄线宽的2μm激光输出,采用中心波长为790nm的LD激光器作为泵浦源端面泵浦掺铥光纤,半导体散热系统,光纤布拉格光栅(FBG)构成谐振腔的全光纤激光器。首先,我们采用一个光栅,光纤尾端采用4%的菲涅尔反射,将所有的光学元件熔接在一起后,我们获得了2μm的稳定输出。当泵浦电流为44A时,获得的最大输出功率为8.7W,斜率效率为29.4%,其线宽为4.5m,阈值功率为0.7W。当采用两个光栅构成谐振腔时,其线宽可窄至3nm左右,光斑质量可得到进一步的提高.实验结果表明:该激光器稳定性可靠、输出激光线宽较窄,功率较高,光斑质量好。  相似文献   

19.
微结构光纤激光器件   总被引:2,自引:0,他引:2  
由于微结构光纤灵活多变的结构特点,使得以其为增益介质的光纤激光器件,具有比普通光纤激光器件更加优异的性能.本文结合国际上微结构光纤激光器件的最新研究进展情况,概述了微结构光纤作为增益介质的独特特性、微结构光纤激光器件的理论分析方法和掺铒、掺镱以及喇曼微结构光纤激光器件的特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号