首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Two-dimensional near-infrared (NIR) and short-wave infrared (SWIR) HgCdTe arrays have been produced using planar ion-implantation isolated heterojunction (PI3H) device technology. This paper is an extension of an earlier study in which focal plane arrays (FPAs) were fabricated based on heterojunction-mesa and ion-implanted planar device structures. The PI3H device structure is pursued in order to verify whether it can encompass both the superb multilayer characteristics of heterojunction detectors as well as the planar integrity of ion-implanted devices. The PI3H devices are characterized, and R0A measurements are carried out at different temperatures and compared to those obtained from heterojunction-mesa and ion-implanted device structures. Data shows the PI3H devices to be superior to both heterojunctionmesa and ion-implanted detectors at temperatures between 130 K and 300 K. Performance characteristics of the thermoelectric (TE) cooled SWIR FPAs with 320 × 256 format, as well as NIR FPAs with 640×512 format based on the PI3H device structure are also discussed.  相似文献   

2.
The standard infrared photovoltaic technology developed for HgCdTe by LETI and industrialized by SOFRADIR is based on the very simple approach of planar ion-implanted n-on-p homojunctions. Both the growth by liquid-phase epitaxy of excellent-quality epitaxial layers and the simplicity of the planar ion-implanted process enables state-of-the-art detectors to be achieved with a high technological yield. These detectors present high shunt impedance, good quantum efficiency, and a low l/f noise level. The diodes are diffusion-limited down to temperatures much lower than 77K. Their saturation current is limited by the minority-carrier lifetime in the p-side material. R0A values around 30 ohm-cm2 are routinely obtained for 10.0 μm cutoff wavelength detectors at 77K. In this paper, we show that with a new process we can increase the diode R0A by more than one order of magnitude. This effect is obtained as a result of an increase of minority-carrier lifetime in the n-on-p homojunction configuration. The maximum R0A value obtained was 655 ohm-cm2 on a 10.0 μm cutoff wavelength detector at 77K. Furthermore, other figures of merit much as quantum efficiency or shunt impedance are slightly improved, and l/f noise is not affected. The data presented in the 40–200K temperature range and 9–13 μm cutoff wavelength range show that this decrease of dark current is kept throughout these temperature wavelength ranges. Therefore, we show that a simple planar ion-implanted homojunction can lead to very large R0A, close to theoretical limits and comparable to data published for p-on-n heterojunctions.  相似文献   

3.
Preliminary characterization results are presented for mid-wave infrared (MWIR) mercury cadmium telluride n-on-p photodiodes fabricated using a plasma induced type conversion junction formation technology. The diodes have been fabricated on three different vacancy doped p-type epitaxial starting materials, grown by liquid phase epitaxy (LPE) on CdZnTe, LPE on sapphire, and P/p isotype heterojunction material grown by molecular beam epitaxy (MBE) on CdZnTe. All materials had CdTe mole fraction in the active region of the device of ∼0.3. The process uses a H2/CH4 plasma generated in a parallel plate reactive ion etching (RIE) system to type convert the p-type material to n-type. The process is different from previously reported type conversion techniques in that it does not require a high temperature anneal, does not expose the junction at the surface to atmosphere after formation, and requires significantly fewer process steps than other planar processes. Homojunction devices fabricated using this process exhibit R0A values >107 Ω·cm2 at 80 K. The R0A is diffusion limited for temperatures >∼135 K. Results for responsivity, bias dependence of dynamic resistance — junction area product and 1/f noise show that the resulting diodes are comparable to the best planar diodes reported in the literature.  相似文献   

4.
This paper proposes a development of n-on-p structures for realizing very long wavelength infrared (VLWIR) detector arrays on mercury cadmium telluride (HgCdTe) epitaxial layers grown on Si substrates. It is shown from a comparative study of zero-bias resistance-area product (R0A) of diodes in n-on-p and p-on-n configurations that the n-on-p structure has promising potential to control contribution of dislocations, without actually reducing dislocation density below the current level (mid-106 cm−2) of HgCdTe/Si material technology. The resulting gain will be in terms of both higher numerical magnitudes of R0A and its reduced scatter.  相似文献   

5.
We have designed and fabricated an optimized long-wavelength/very-long wavelength two-color quantum well infrared photodetector (QWIP) device structure. The device structure was grown on a 3-in semi-insulating GaAs substrate by molecular beam epitaxy (MBE). The wafer was processed into several 640×486 format monolithically integrated 8-9 and 14-15 μm two-color (or dual wavelength) QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640×486 silicon CMOS readout multiplexers. A thinned (i.e., substrate removed) FPA hybrid was integrated into a liquid helium cooled dewar for electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 μm detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature for 300 K background with f/2 cold stop. The 14-15 μm detectors of the FPA reaches BLIP at 40 K operating temperature under the same background conditions. In this paper we discuss the performance of this long-wavelength dualband QWIP FPA in terms of quantum efficiency, detectivity, noise equivalent temperature difference (NEΔT), uniformity, and operability  相似文献   

6.
The reactive ion etching (RIE) technique has been shown to produce high-performance n-on-p junctions by localized-type conversion of p-type mid-wavelength infrared (MWIR) HgCdTe material. This paper presents variable area analysis of n-on-p HgCdTe test diodes and data on two-dimensional (2-D) arrays fabricated by RIE. All devices were fabricated on x = 0.30 to 0.31 liquid-phase epitaxy (LPE) grown p-type (p = ∼1 × 1016 cm−3) HgCdTe wafers obtained from Fermionics Corp. The diameter of the circular test diodes varied from 50 μm to 600 μm. The 8 × 8 arrays comprised of 50 μm × 50 μm devices on a 100-μm pitch, and all devices were passivated with 5000 ? of thermally deposited CdTe. At temperatures >145 K, all devices are diffusion limited; at lower temperatures, generation-recombination (G-R) current dominates. At the lowest measurement temperature (77 K), the onset of tunneling can be observed. At 77 K, the value of 1/R0A for large devices shows quadratic dependence on the junction perimeter/area ratio (P/A), indicating the effect of surface leakage current at the junction perimeter, and gives an extracted bulk value for R0A of 2.8 × 107 Ω cm2. The 1/R0A versus P/A at 195 K exhibits the well-known linear dependence that extrapolates to a bulk value for R0A of 17.5 Ω cm2. Measurements at 77 K on the small 8 × 8 test arrays were found to demonstrate very good uniformity with an average R0A = 1.9 × 106 Ω cm2 with 0° field of view and D* = 2.7 × 1011cm Hz1/2/W with 60° field of view looking at 300 K background.  相似文献   

7.
宋林伟  孔金丞  赵鹏  姜军  李雄军  方东  杨超伟  舒畅 《红外与激光工程》2023,52(4):20220655-1-20220655-8
昆明物理研究所多年来持续开展了对Au掺杂碲镉汞材料、器件结构设计、可重复的工艺开发等研究,突破了Au掺杂碲镉汞材料电学可控掺杂、器件暗电流控制等关键技术,将n-on-p型碲镉汞长波器件品质因子(R0A)从31.3Ω·cm2提升到了363Ω·cm2(λcutoff=10.5μm@80 K),器件暗电流较本征汞空位n-on-p型器件降低了一个数量级以上。研制的非本征Au掺杂长波探测器经历了超过7年的时间贮存,性能无明显变化,显示了良好的长期稳定性。基于Au掺杂碲镉汞探测器技术,昆明物理研究所实现了256×256 (30μm pitch)、640×512 (25μm pitch)、640×512 (15μm pitch)、1 024×768 (10μm pitch)等规格的长波探测器研制和批量能力,实现了非本征Au掺杂长波碲镉汞器件系列化发展。  相似文献   

8.
In recent years, continuous progress has been published in the development of HgCdTe (MCT) infrared (IR) focal plane arrays (FPAs) fabricated by molecular beam epitaxy on GaAs substrates. In this publication, further characterization of the state-of-the art 1280 × 1024 pixel, 15-μm pitch detector fabricated from this material in both the mid-wavelength (MWIR) and long-wavelength (LWIR) IR region will be presented. For MWIR FPAs, the percentage of defective pixel remains below 0.5% up to an operating temperature (T OP) of around 100 K. For the LWIR FPA, an operability of 99.25% was achieved for a T OP of 76 K. Additionally, the beneficial effect of the inclusion of MCT layers with a graded composition region was investigated and demonstrated on current–voltage (IV) characteristics on test diodes in a MWIR FPA.  相似文献   

9.
串音与焦平面阵列(FPA)的灵敏度和分辨率密切相关。用模拟的方法定量地计算了In0.53Ga0.47As/InP 探测器焦平面阵列的电串音随光波波长、入射方向和台面的刻蚀深度的变化情况。结果显示:台面结构的器件的串音抑制性能比平面结构的要好;由于材料吸收深度和异质结耗尽层宽度的影响,短波长的光的串音比长波长要小,正照射的串音比背照射要小;另外,当台面的刻蚀深度穿透吸收层厚度时,其电串扰几乎完全被抑制。研究结果提出了相应的InGaAs FPA的低串音设计。  相似文献   

10.
LWIR HgCdTe on Si detector performance and analysis   总被引:2,自引:0,他引:2  
We have fabricated a series of 256 pixel×256 pixel, 40 μm pitch LWIR focal plane arrays (FPAs) with HgCdTe grown on (211) silicon substrates using MBE grown CdTe and CdSeTe buffer layers. The detector arrays were fabricated using Rockwell Scientific’s double layer planar heterostructure (DLPH) diode architecture. The 78 K detector and focal plane array (FPA) performance are discussed in terms of quantum efficiency (QE), diode dark current and dark current operability. The FPA dark current and the tail in the FPA dark current operability histograms are discussed in terms of the HgCdTe epitaxial layer defect density and the dislocation density of the individual diode junctions. Individual diode zero bias impedance and reverse bias current-voltage (I-V) characteristics vs. temperature are discussed in terms of the dislocation density of the epitaxial layer, and the misfit stress in the epitaxial multilayer structure, and the thermal expansion mismatch in the composite substrate. The fundamental FPA performance limitations and possible FPA performance improvements are discussed in terms of basic device physics and material properties.  相似文献   

11.
The analysis of R0A products as a function of magnetic field in n-on-p diodes using a simple diffusion current model has previously been shown to yield both Jep/Jtotal ratio (the relative contribution of the p-side diffusion current) and μep (the minority carrier, electron mobility). In this paper, we report the good agreement between the experimental and theoretical dependence of μep on the hole concentration over a wide range between 1 x 1016 and 4 x 1017 cm−3 in n-on-p homojunction diodes fabricated on undoped p-type Hg0.78Cd0.22Te liquid phase epitaxial (LPE) films. The averaged Jep/Jtotal ratio varied between 68 and 90% with the hole concentration. These Jep/Jtotal ratios indicate that other leakage current mechanisms than the p-side diffusion current were not negligible. Also, for the first time, comparative measurements were made on p+/n heterojunction diodes consisting of As-doped Hg0.07Cd0.30Te and In-doped Hg0.78Cd0.22Te LPE layers. Unlike a typical change in R0A products by a factor of 2–3 in n-on-p homojunction diodes, the R0A products in p+/n heterojunction diodes at 7 kG were typically only 2–3% higher than that at the zero field. The typical Jep/Jtotal ratio in p+/n heterojunction diodes was about 3–4 %, which confirms the general belief that the p+ cap layer, due to the high doping and a larger bandgap, contributes very little to the total leakage current.  相似文献   

12.
室温短波碲镉汞结区的LBIC方法研究   总被引:6,自引:6,他引:0  
室温短波碲镉汞焦平面技术在军事与航天工业上的应用越来越广泛,列阵中探测器的尺寸正不断减小,这使得常规工艺形成的光伏探测器,其有效光敏面面积扩大的问题越来越突出.我们利用激光诱导电流(LBIC)检测系统测试了室温短波碲镉汞n—on—p芯片的光响应分布,证实了有效光敏面扩大的存在.从实验结果看,结区的侧向扩散收集效应是造成目前常规工艺形成的光伏器件光敏面面积扩大的主要因素.  相似文献   

13.
We have developed the capability to grow HgCdTe mid-wave infrared radiation double-layer heterojunctions (MWIR DLHJs) on 4″ Si wafers by molecular beam epitaxy (MBE), and fabricate devices from these wafers that are comparable to those produced by mature technologies. Test data show that the detectors, which range in cutoff wavelength over 4–7 μm, are comparable to the trendline performance of liquid phase epitaxy (LPE)-grown material. The spectral characteristics are similar, with a slight decrease in quantum efficiency attributable to the Si substrate. With respect to R0A, the HgCdTe/Si devices are closer to the theoretical radiative-limit than LPE-grown detectors. Known defect densities in the material have been correlated to device performance through a simple model. Slight 1/f noise increases were measured in comparison to the LPE material, but the observed levels are not sufficient to significantly degrade focal plane array (FPA) performance. In addition to discrete detectors, two FPA formats were fabricated. 128×128 FPAs show MWIR sensitivity comparable to mature InSb technology, with pixel operability values in excess of 99%. A 640×480 FPA further demonstrates the high-sensitivity and high-operability capabilities of this material.  相似文献   

14.
An understanding of the effects of dislocations in HgCdTe diodes is complicated by several issues such as the diode architecture, diode formation process, and the thermal history and location of the dislocations. To help decouple the effects of these factors, high stress films were used to lithographically introduce dislocations with different densities and locations during the fabrication process of ion implanted, n-on-p diodes. Both array and diode test structures were studied. After fabrication, the diodes were characterized with variable temperature I–V measurements and noise measurements. The diodes were then stripped and defect etched to quantify the density and distribution of the dislocations. The effects of these process-induced dislocations were analyzed and compared to the effects of as grown dislocations, subgrain boundaries and dislocations in other device architectures reported in the literature.1,2 In general, high densities of either as grown or process-induced dislocations in n-on-p, ion implanted diodes severely degrade device performance by producing field dependent dark current At 77K, dislocation densities greater than the mid 106 cm−2 can produce dark current densities in excess of the diode diffusion current. Dislocations located near the outer periphery of the diode produce approximately ten times the dark current of interior dislocations. Grain boundaries, sub-grain boundaries, and twins also produce sufficient field dependent dark current to limit diode performance at 77K. The dark current produced by dislocations is nearly temperature in dependent, suggesting rather severe limitations on dislocation densities for low temperature diode operation.  相似文献   

15.
Molecular beam epitaxy was employed for the growth of HgCdTe-based n-p+-n device structures on (211)B oriented CdZnTe substrates. The device structures were processed as mesa isolated diodes, and operated as back-to-back diodes for the simultaneous detection of two closely spaced sub-bands in the mid-wave infrared spectrum. The devices were characterized by R0A values in excess of 5 × 105 Ω cm2 at 78K, at f/2 fov and quantum efficiencies greater than 70% in each band. Infrared imagery from a focal plane array with 128 × 128 pixels was acquired simultaneously from each band at temperatures between 77 to 180K, with no observable degradation in the image quality with increase in temperature.  相似文献   

16.
We report on a new, simple process to fabricate planar Hg1−yCdyTe/Hg1−xCdxTe (x<y) heterostructure photodiodes with p-on-n configuration. The material used for this demonstration was a double-layer p-on-n heterostructure that was grown by a liquid-phase-epitaxy technique. The p-on-n planar devices consisted of an arsenic-doped p-type epilayer (y=0.28) on top of a long-wavelength infrared n-type epilayer (x=0.225, =10 m). The ion-beam-milling p-type to n-type conversion effect was used to delineate the active device element, and to isolate the planar device. Detailed analysis of the current-voltage characteristics of these diodes as a function of temperature show that they have high performance, and that their dark current is diffusion-limited down to 60 K. The results show that over a wide range of cut-off wavelengths, the R0A product values are close to the theoretical limit. Electro-optic properties of a 2-D array of small diodes with a 60- m pitch are presented, and demonstrate the potential of the new process for implementation of 2-D arrays. The electrical properties of the photodiodes are stable following long-term annealing at 80°C for 48 hours.  相似文献   

17.
Mercury cadmium telluride (HgCdTe) grown on large-area silicon (Si) substrates allows for larger array formats and potentially reduced focal-plane array (FPA) cost compared with smaller, more expensive cadmium zinc telluride (CdZnTe) substrates. In this work, the use of HgCdTe/Si for mid- wavelength/long-wavelength infrared (M/LWIR) dual-band FPAs is evaluated for tactical applications. A number of M/LWIR dual-band HgCdTe triple-layer n-P-n heterojunction device structures were grown by molecular-beam epitaxy (MBE) on 100-mm (211)Si substrates. Wafers exhibited low macrodefect densities (< 300 cm?2). Die from these wafers were mated to dual-band readout integrated circuits to produce FPAs. The measured 81-K cutoff wavelengths were 5.1 μm for band 1 (MWIR) and 9.6 μm for band 2 (LWIR). The FPAs exhibited high pixel operability in each band with noise-equivalent differential temperature operability of 99.98% for the MWIR band and 98.7% for the LWIR band at 81 K. The results from this series are compared with M/LWIR FPAs from 2009 to address possible methods for improvement. Results obtained in this work suggest that MBE growth defects and dislocations present in devices are not the limiting factor for detector operability, with regards to infrared detection for tactical applications.  相似文献   

18.
The flexible nature of molecular-beam epitaxy (MBE) growth is beneficial for HgCdTe infrared-detector design and allows for tailored growths at lower costs and larger focal-plane array (FPA) formats. Control of growth dynamics gives the MBE process a distinct advantage in the production of multicolor devices, although opportunities for device improvement still exist. Growth defects can inhibit pixel performance and reduce the operability in FPAs, so it is important to understand and evaluate their properties and impact on detector performance. The object of this paper is to understand and correlate the effects of macrodefects on two-color detector performance. We observed the location of single-crystal and polycrystalline regions on planar and cross-sectioned surfaces of two-color device structures when void defects were viewed by scanning electron microscopy (SEM). Compositional analysis via energy dispersive x-ray analysis (EDXA) of voids in the cross section showed elevated Te and reduced Hg when compared to defect-free growth areas. The second portion of this study examined the correlation of macrodefects with pixel operability and diode current-voltage (I–V) characteristics in mid-wavelength infrared (MWIR)/MWIR (M/M) and long wavelength infrared (LWIR)/LWIR (L/L) two-color devices. The probability of diode failure when a void is present is 98% for M/M and 100% for L/L. Voids in two-color detectors also impact diodes neighboring their location; the impact is higher for L/L detectors than M/M detectors. All void-containing diodes showed early breakdown in the I–V characteristics in one or both bands. High dislocation densities were observed surrounding voids; the high density spread further from the void for L/L detectors compared to M/M detectors.  相似文献   

19.
In the past several years, we have made significant progress in the growth of CdTe buffer layers on Si wafers using molecular beam epitaxy (MBE) as well as the growth of HgCdTe onto this substrate as an alternative to the growth of HgCdTe on bulk CdZnTe wafers. These developments have focused primarily on mid-wavelength infrared (MWIR) HgCdTe and have led to successful demonstrations of high-performance 1024×1024 focal plane arrays (FPAs) using Rockwell Scientific’s double-layer planar heterostructure (DLPH) architecture. We are currently attempting to extend the HgCdTe-on-Si technology to the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) regimes. This is made difficult because the large lattice-parameter mismatch between Si and CdTe/HgCdTe results in a high density of threading dislocations (typically, >5E6 cm−2), and these dislocations act as conductive pathways for tunneling currents that reduce the RoA and increase the dark current of the diodes. To assess the current state of the LWIR art, we fabricated a set of test diodes from LWIR HgCdTe grown on Si. Silicon wafers with either CdTe or CdSeTe buffer layers were used. Test results at both 78 K and 40 K are presented and discussed in terms of threading dislocation density. Diode characteristics are compared with LWIR HgCdTe grown on bulk CdZnTe.  相似文献   

20.
HgCdTe grown on large-area Si substrates allows for larger array formats and potentially reduced focal-plane array (FPA) cost compared with smaller, more expensive CdZnTe substrates. The goal of this work is to evaluate the use of HgCdTe/Si for mid-wavelength/long-wavelength infrared (MWIR/LWIR) dual-band FPAs. A series of MWIR/LWIR dual-band HgCdTe triple-layer n-P-n heterojunction (TLHJ) device structures were grown by molecular-beam epitaxy (MBE) on 100-mm (211)Si substrates. The wafers showed low macrodefect density (<300 cm−2) and was processed into 20-μm-unit-cell 640 × 480 detector arrays which were mated to dual-band readout integrated circuits (ROICs) to produce FPAs. The measured 80-K cutoff wavelengths were 5.5 μm for MWIR and 9.4 μm for LWIR, respectively. The FPAs exhibited high pixel operabilities in each band, with noise equivalent differential temperature (NEDT) operabilities of 99.98% for the MWIR band and 99.6% for the LWIR band demonstrated at 84 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号