首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
借助微机电加工技术(MEMS技术)研制的微折叠波导行波管(FWG-TWT)太赫兹辐射源,具有紧凑、小型、宽带以及高功率的特点。本文对345 GHz微电真空折叠波导慢波结构进行了结构参数的规律分析和初步优化设计。基于小信号理论设计的慢波结构的初步结构参数,采用三维PIC软件仿真并优化,研究了电子参数、几何结构参数、磁场参数与增益之间的关系,对折叠波导慢波结构的设计具有一定的参考意义。  相似文献   

2.
通过对折叠波导的理论分析,提出一种快速设计折叠波导慢波结构的方法。优化设计了中心频率为0.22 THz的折叠波导慢波结构,分析了结构参数对高频特性的影响。为防止振荡,仿真中采用截断的慢波结构。互作用仿真表明,在电子注电压为16 kV,电流为10 mA情况下,中心频率处增益为23.9 dB,输出功率为1.2 W。其中3 dB带宽大于14 GHz(0.214 THz~0.228 THz),带内输出功率大于0.5 W,在7 GHz(0.217 THz~0.224 THz)范围内输出功率大于1 W。  相似文献   

3.
亚毫米波折叠波导慢波结构的损耗特性研究   总被引:2,自引:0,他引:2  
损耗是慢波结构的重要参量之一.采用理论与仿真的方法分析了在亚毫米波段(220 GHz)折叠波导慢波结构的导体损耗.在理论模型计算了弯曲波导段的衰减系数,并考虑了波导内表面粗糙度对电导率的影响,从而使模型更接近实际情况.计算结果表明,弯曲波导段的衰减常数大于直渡导段,而且理论模型计算出的每周期折叠波导电路的损耗与高频仿真软件HFSS的结果吻合较好,说明理论模型有较高的精确度.在此基础上,分析了慢渡结构参数变化对损耗的影响.  相似文献   

4.
在太赫兹频段,折叠波导慢波结构主要采用微细加工技术完成。讨论了目前折叠波导慢波结构主要的微加工工艺,分析了主要工艺误差包括波导深度、侧壁垂直度对0.41 THz折叠波导慢波结构高频特性的影响。通过分析比较,a值对折叠波导行波管性能影响很大,需要在工艺中精确控制。在侧壁垂直度为89°范围以内,侧壁垂直度的变化对折叠波导行波管性能影响不大。通过仿真分析,确定了工艺中必须控制加工精确度的工艺步骤,这对0.41 THz折叠波导行波管的研制有非常重要的意义。  相似文献   

5.
在0.14 THz,0.22 THz和0.34 THz折叠波导行波管研制的基础上,讨论了0.41 THz折叠波导行波管慢波结构设计与加工的可行性,分析研究了折叠波导慢波结构弯曲处直角弯曲与半圈弯曲、方形电子注通道与圆形电子注通道对色散特性、耦合阻抗、带宽、冷损耗和增益的影响。考虑了慢波结构中增加理想衰减器对该行波管带宽和增益的影响,得到了0.41 THz折叠波导行波管慢波结构的初步设计方案,为太赫兹折叠波导行波管的继续发展打下了一定基础。  相似文献   

6.
毫米波行波管具有大功率、宽频带、高增益等特点,广泛用于雷达、高速通信、电子对抗等现代军事装备中。为提高折叠波导耦合阻抗并考虑工程应用性,提出一种耳型折叠波导新型慢波结构。与常规矩形波导相比,工作频带内耦合阻抗提高30%以上,损耗降低10%。研制的耳型折叠波导W波段行波管,在工作电压21.9 kV,电流210 mA,占空比为5%时,10.8 GHz带宽内输出功率大于192 W,峰值功率达278 W,电子效率和增益分别达到6.3%和44.6 dB,行波管工作稳定。  相似文献   

7.
W波段折叠波导慢波结构设计及三维注波互作用模拟   总被引:2,自引:0,他引:2  
本文综合分析了折叠波导的几何尺寸和电子束参数,运用电磁场软件MAFIA的粒子模拟程序对三维折叠波导慢波结构进行了模拟.模型中,电磁波通过波导模式导入;为了克服较大空间电荷效应造成的电子注发散,使用了纵向聚焦磁场.基于三维互作用模型得到了W波段折叠波导的模拟结果,该结果可以对折叠波导慢波结构的三维互作用性能进行预测和分析.  相似文献   

8.
在一支0.22 THz折叠波导行波管样管的模拟设计和实验研究基础上,对该样管进行了优化设计。对慢波损耗特性、慢波结构的尺寸冗余度进行了研究,对结构加工进行了进一步的考虑,对样管的实验研究进行了详细讨论并论述了新慢波结构的设计。采用HFSS软件结合大信号理论计算进行模拟,结果表明,折叠波导行波管的输出功率不低于100 mW,带宽不低于5 GHz。  相似文献   

9.
在太赫兹频段,损耗对折叠波导慢波结构的特性有显著影响。提出一种计算折叠波导慢波结构损耗的理论模型,推导出弯曲波导的衰减系数。分别使用理论模型和商业仿真软件计算了0.67 THz折叠波导慢波结构的损耗,二者的计算结果吻合较好,表明理论模型有较高的精确度。最后,使用理论模型分析了0.67 THz折叠波导慢波结构的结构参数变化对损耗特性的影响。  相似文献   

10.
研究了G波段双注折叠波导(FWG)TE20模的基本特性。首先计算了双注FWG TE20模的高频特性,采用等效电路法计算了色散特性;根据定义式计算了耦合阻抗,同时将二者的计算结果与HFSS仿真结果进行对比。结果显示,色散特性随频率升高差距增大,耦合阻抗随频率升高差距降低。利用电磁仿真技术(CST)粒子模拟软件对双注FWG TE20模的注-波互作用情况进行仿真,得到了慢波结构中电子轨迹以及输入输出信号频谱图,结果表明,在工作频率为205 GHz时,四段FWG的增益为34.74 dB。  相似文献   

11.
提出并研究了一种菱形曲折波导慢波结构.与传统的矩形曲折波导慢波结构相比,菱形曲折波导慢波结构在相同频带下拥有更大的尺寸,在相同尺寸下拥有更宽的带宽.同时提出了适用于这种慢波结构的输入-输出过渡结构和衰减器.在此基础上,设计了一种用于行波管的340 GHz菱形曲折波导慢波结构,并采用相速负跳变技术提高了其增益.模拟仿真结...  相似文献   

12.
提出了一种具有高频率、宽频带和低电压特点的矩形同轴曲折波导慢波结构,所提出的矩形同轴曲折波导工作于过模状态,工作频率较高,同时具有不错的传输特性。设计了一种宽带的双脊加载的波导-同轴转换器,其带宽可以覆盖矩形同轴曲折波导行波管的整个工作频带。所设计的矩形同轴曲折波导行波管工作电压和电流分别为3230 V和150 mA,慢波结构长度为32 mm,PIC仿真结果表明,在76~110 GHz频率范围内,其输出功率超过13.7 W,在108GHz频点,输出功率达到最大值,约为27.4 W,对应的射频效率为 5.65%。  相似文献   

13.
提出了一种开敞式脊加载折叠波导慢波结构.通过除去直波导段周围的金属边界,形成一种开敞式结构以减弱色散,同时在直波导段加脊以提高耦合阻抗.研究表明,和传统结构相比,新型结构在不影响带宽的前提下,有效提高了耦合阻抗,尤其在大功率设计情况下,耦合阻抗的提高接近1倍.  相似文献   

14.
使用一种显式方法对0.14 THz折叠波导行波管慢波结构进行了快速设计,并通过解析模型、等效电路模型以及电磁场仿真软件(CST MWS)对结构的色散关系和耦合阻抗进行了计算。计算结果表明,0.14 THz附近的色散较为平坦,耦合阻抗在1Ω左右。为了满足大功率输出需求,对初始结构尺寸进行了部分调整。CST PS互作用模拟结果表明,在0.14 THz附近,输出功率大于1 W。用微电火花(EDM)和微铣削方法分别进行了加工实验,结果表明,两种方法在尺寸精确度上均能满足指标要求,微铣削加工能获得更平整、表面粗糙度更好的槽底。  相似文献   

15.
提出了一种适用于W波段行波管(TWT)的双注矩形环杆(DBRRB)慢波结构(SWS),该结构具有平面特性,适合于微细加工.在一对T形介质杆的支撑下,RRB SWS适用于双带状电子注工作.利用计算机仿真分析了其高频特性.设计并采用了渐变结构和阶梯波导的宽带输入输出结构.采用粒子(PIC)模拟研究了RRB SWS的热仿真性...  相似文献   

16.
分析了一种适用于E波段81~86 GHz空间行波管的新型慢波结构——折叠矩形槽波导.折叠矩形槽波导来源于传统的矩形槽波导,将E面沿其纵向来回弯曲而形成.利用电磁场仿真软件Ansoft HFSS设计优化并最终确定了E波段折叠矩形槽波导的关键几何尺寸.同时,模拟仿真出了折叠矩形槽波导在中心频率f=83.5 GHz处的耦合阻抗沿x和y方向上的变化趋势,得出其可通过加载带状电子注获得更高的平均耦合阻抗.利用CST粒子工作室模拟得出:折叠矩形槽波导行波管在中心频点83.5 GHz处输出功率为210 W,电子效率达到8.05%.  相似文献   

17.
本文提出一种适用于工作在毫米波段(85~110 GHz)的带状注高效率曲折槽波导毫米波行波管,并进行了参数优化设计、加工制造和冷测实验研究.曲折槽波导首次采用一次改变周期相速跳变技术提高带状注毫米波行波管电子互作用效率.文中加工制造了三种不同周期个数(包含相速跳变和均匀相速两种类型)的曲折槽波导,并进行了S参数测试,其...  相似文献   

18.
利用折叠波导返波振荡器(FW-BWO)作为激励源,用于激励工作频率为216 GHz的折叠波导行波放大器.利用3D-Magic进行仿真实验,通过仿真优化,最终得到96 W的输出功率,整个电路的长度被设计为只有1 cm左右.通过该方法,显著地缩短了高频结构长度,有利于实现小型化的真空电子学太赫兹源,对集成化的太赫兹源设计具有重要的参考价值.  相似文献   

19.
提出了一种基于开槽介质基底的卷绕微带线慢波结构.由于金属曲折微带线印制在介质基底的半圆形槽中,这种卷绕微带线慢波结构非常适合圆形电子注行波管,从而使得采用这种新型慢波结构的行波管可以利用传统的周期永磁磁场进行聚焦.文章对提出的卷绕微带线慢波结构的色散特性,耦合阻抗,传输特性及注-波互作用进行了分析.和传统的平面微带线慢波结构相比,提出的卷绕微带线慢波结构具有更低的相速、更弱的色散和更高的耦合阻抗,从而使得其适合于低电压、宽频带、小型化的毫米波行波管.将同步电压及直流电流分别设置为6 550 V及0.1 A的情况下,基于该卷绕微带线慢波结构的Ka波段行波管在35 GHz处能够输出42.32 W的功率,对应增益为26.26 dB,且均匀聚焦磁场只需0.4 T.  相似文献   

20.
0.22 THz 折叠波导慢波结构具有尺寸小,刚度低,精确度与表面光洁度要求高,结构复杂的特点。若采用微数控铣削加工方式,加工产生的应力易造成零件变形。微细电火花线切割加工技术为无刚性电蚀加工,非常适合慢波结构的微细加工。本文从微能脉冲电源、微细电极丝、表面质量、表面残余应力等方面,介绍了0.22 THz 折叠波导慢波结构微电火花线切割加工技术,实践证明:采用微电火花线切割加工工艺加工出的0.22 THz 折叠波导慢波结构,经测试满足了设计要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号