首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of the aerosol optical thickness (AOT) by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard Terra and Aqua satellites are being used extensively for applications to climate and air quality studies. Data quality is essential for these studies. Here we investigate the effects of unresolved clouds on the MODIS measurements of the AOT. The main cloud effect is from residual cirrus that increases the AOT by 0.015/spl plusmn/0.003 at 0.55 /spl mu/m. In addition, lower level clouds can add contamination. We examine the effect of lower clouds using the difference between simultaneously measured MODIS and AERONET AOT. The difference is positively correlated with the cloud fraction. However, interpretation of this difference is sensitive to the definition of cloud contamination versus aerosol growth. If we consider this consistent difference between MODIS and AERONET to be entirely due to cloud contamination we get a total cloud contamination of 0.025/spl plusmn/0.005, though a more likely estimate is closer to 0.020 after accounting for aerosol growth. This reduces the difference between MODIS-observed global aerosol optical thickness over the oceans and model simulations by half, from 0.04 to 0.02. However it is insignificant for studies of aerosol cloud interaction. We also examined how representative are the MODIS data of the diurnal average aerosol. Comparison to monthly averaged sunphotometer data confirms that either the Terra or Aqua estimate of global AOT is a valid representation of the daily average. Though in the vicinity of aerosol sources such as fires, we do not expect this to be true.  相似文献   

2.
Cloud droplet effective radius (CDR) can be estimated from the spectral signature of cloud reflectance. The technique has been applied to measurements of the Advanced Very High Resolution Radiometer instrument and more recently to the Moderate Resolution Imaging Spectroradiometer (MODIS). Another technique relies on the directional signature of the polarized reflectance and has been applied to observations from Polarization and Directionality of the Earth's Reflectances (POLDER) onboard Advanced Earth Observation Satellite (ADEOS). Although the latter technique requires very specific conditions, we argue that, when applicable, it is very accurate. A large fraction of successful POLDER estimates are derived from measurements over stratocumulus cloud fields. During portions of 2003, POLDER and MODIS acquired near coincident observations. The data can then be used for an evaluation of the two CDR products. The two datasets are highly correlated over the oceans albeit with a MODIS high bias of about 2 /spl mu/m. The correlation breaks down when POLDER retrieves small droplets (less than 7 /spl mu/m), which occurs over most land surfaces as well as polluted oceanic areas. We discuss the possible causes for biases and errors. Although differences in the two CDR estimates are expected because of the differences in the spatial scale and vertical weighting function, we did not find a fully satisfactory explanation for the bias and lack of correlation over land surfaces. It seems, however, that the spatial variability as seen by MODIS is larger than that deduced from POLDER measurements, in particular over land surfaces.  相似文献   

3.
辐射偏振校正对具有相对较大偏振响应的海洋水色卫星遥感器(如Aqua MODIS)是十分必要的,可在一定程度上提高海洋水色信息提取的精度.目前, MODIS已经实现了业务化的辐射偏振校正,但其算法中忽略了气溶胶散射对大气顶辐射偏振分量的影响.利用海洋-大气耦合矢量辐射传输模型PCOART,分别模拟获得纯瑞利大气(无气溶胶)和气溶胶光学厚度为0.2大气时的大气顶辐射偏振分量.结果表明,除太阳耀斑区外,气溶胶散射对蓝光波段(443 nm)大气顶线偏振辐亮度的贡献很小,可以忽略不计,而对近红外波段(865 nm)大气顶线偏振辐亮度的贡献显著.此外,将PCOART数值模拟的大气顶瑞利散射辐射线偏振反射率与POLDER实际观测的大气顶线偏振反射率进行了比较,结果同样说明了气溶胶散射对蓝光波段(443 nm)大气顶线偏振反射率的贡献很小,而对近红外波段(865 nm).大气顶线偏振反射率的贡献显著.最后,在现有MODIS辐射偏振校正算法基础上,提出了考虑气溶胶散射的海洋水色卫星遥感辐射偏振校正算法,并利用POLDER实测的大气顶线偏振反射率对算法进行了检验,结果表明,无论是在443 nm波段,还是在865 nm波段,均比MODIS辐射偏振校正算法估算大气顶辐射偏振分量更接近POLDER实测结果.  相似文献   

4.
The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spaceborne lidar, expected to be launched in 2004, will collect profiles of the lidar attenuated backscattering coefficients of aerosol and clouds at 0.53 and 1.06 /spl mu/m. The measurements are sensitive to the vertical distribution of aerosols. However, the information is insufficient to be mapped into unique aerosol physical properties and vertical distribution. Spectral radiances measured by the Moderate Resolution Imaging Spectrometer (MODIS) on the Aqua spacecraft, acquired simultaneously with the CALIPSO observations, can constrain the solutions. The combination of the MODIS and CALIPSO data can be used to derive extinction profiles of the fine and coarse modes of the aerosol size distribution for aerosol optical thickness of 0.1 and larger. Here we describe a new inversion method developed to invert simultaneously MODIS and CALIPSO data over glint-free ocean. The method is applied to aircraft lidar and MODIS data collected over a dust storm off the coast of West Africa during the Saharan Dust Experiment (SHADE). The backscattering-to-extinction ratio (BER) (BER=/spl omega//sub o/P(180)/4/spl pi/) can be retrieved from the synergism between measurements avoiding a priori hypotheses required for inverting lidar measurements alone. For dust, the resultant value of BER =0.016 sr/sup -1/ is over 50% smaller than what is expected using Mie theory, but in good agreement with recent results obtained from Raman lidar observations of dust episodes. The inversion is robust in the presence of 10% and 20% noise in the lidar signal at 0.53 and 1.06 /spl mu/m, respectively. Calibration errors of the lidar of 5% to 10% can cause an error in optical thickness of 20% to 40%, respectively, in the tested cases.  相似文献   

5.
Cloud absorption radiometer (CAR) multispectral and multiangular data, collected during the Smoke, Clouds, and Radiation-Brazil (SCAR-B) Experiment, was used to examine the ratio technique, the official method for remote sensing of aerosols over land from the moderate resolution imaging spectroradiometer (MODIS) data, for view angles from nadir to 650 off-nadir. The strategy used is to first select a pristine, low aerosol optical thickness flight, and then to compute ratios of reflectance at 0.47 and 0.68 μm to corresponding values at 2.20 μm, separately for backward and forward scattering directions. Similarly, the authors analyzed data from high turbidity flights for comparison purposes. For both flights, they removed the effects of atmospheric absorption and scattering using 6S, a radiative transfer code, and then recomputed the ratios again for different values of aerosol optical thickness. Finally, they analyzed bidirectional reflection function (BRF) data to examine the dependence of the ratio technique on the relative azimuth angle. Results of this analysis show that a relationship between visible reflectance and near infrared (IR) reflectance exists for view angles from nadir to 400 off-nadir, and that simple parametric relationships can be derived  相似文献   

6.
The Moderate Resolution Imaging Spectro-Radiometer (MODIS) on the Terra spacecraft has a channel near 1.38 /spl mu/m for remote sensing of high clouds from space. The implementation of this channel on MODIS was primarily based on previous analysis of hyperspectral imaging data collected with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS). We describe an algorithm to retrieve cirrus bidirectional reflectance using channels near 0.66 and 1.38 /spl mu/m. It is shown that the apparent reflectance of the 1.38-/spl mu/m channel is essentially the bidirectional reflectance of cirrus clouds attenuated by the absorption of water vapor above cirrus clouds. A practical algorithm based on the scatterplot of 1.38-/spl mu/m channel apparent reflectance versus 0.66-/spl mu/m channel apparent reflectance has been developed to scale the effect of water vapor absorption so that the true cirrus reflectance in the visible spectral region can be obtained. To illustrate the applicability of the present algorithm, results for cirrus reflectance retrievals from AVIRIS and MODIS data are shown. The derived cirrus reflectance in the spectral region of 0.4-1 /spl mu/m can be used to remove cirrus contamination in a satellite image obtained at a visible channel. An example of such an application is shown. The spatially averaged cirrus reflectances derived from MODIS data can be used to establish global cirrus climatology, as is demonstrated by a sample global cirrus reflectance image.  相似文献   

7.
Aerosol properties over bright-reflecting source regions   总被引:19,自引:0,他引:19  
Retrieving aerosol properties from satellite remote sensing over a bright surface is a challenging problem in the research of atmospheric and land applications. In this paper we propose a new approach to retrieve aerosol properties over surfaces such as arid, semiarid, and urban areas, where the surface reflectance is usually very bright in the red part of visible spectrum and in the near infrared, but is much darker in the blue spectral region (i.e., wavelength <500 nm). In order to infer atmospheric properties from these data, a global surface reflectance database of 0.1/spl deg/ latitude by 0.1/spl deg/ longitude resolution was constructed over bright surfaces for visible wavelengths using the minimum reflectivity technique (e.g., finding the clearest scene during each season for a given location). The aerosol optical thickness and aerosol type are then determined simultaneously in the algorithm using lookup tables to match the satellite observed spectral radiances. Examples of aerosol optical thickness derived using this algorithm over the Sahara Desert and Arabian Peninsula reveal various dust sources, which are important contributors to airborne dust transported over long distances. Comparisons of the satellite inferred aerosol optical thickness and the values from ground-based Aerosol Robotic Network (AERONET) sun/sky radiometer measurements indicate good agreement (i.e., within 30%) over the sites in Nigeria and Saudi Arabia. This new algorithm, when applied to Moderate Resolution Imaging Spectroradiometer (MODIS), Sea-viewing Wide Field of view Sensor (SeaWiFS), and Global Imager (GLI) satellite data, will provide high spatial resolution (/spl sim/1 km) global information of aerosol optical thickness over bright surfaces on a daily basis.  相似文献   

8.
In this paper, we introduce a method to retrieve the optical thickness of tropical cirrus clouds using the isolated visible cirrus reflectance (without atmospheric and surface effects). The isolated cirrus reflectance is inferred from level 1b calibrated 0.66- and 1.375-/spl mu/m Moderate Resolution Imaging Spectroradiometer (MODIS) data. We created an optical properties database and optical thickness lookup library using previously calculated single-scattering data in conjunction with the discrete ordinates radiative transfer (DISORT) code. An algorithm was constructed based on this lookup library to infer the optical thickness of tropical cirrus clouds for each pixel in a MODIS image. We demonstrate the applicability of this algorithm using several independent MODIS images from the Terra satellite. The present method is complimentary to the MODIS operational cloud retrieval algorithm for the case of cirrus clouds.  相似文献   

9.
The Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol retrieval algorithm was developed to derive aerosol properties at a global scale, suitable for climate studies. Under favorable conditions (clear sky and over dark surfaces), the standard 10/spl times/10 km MODIS aerosol products are also useful on regional scales to monitor aerosol distributions and transports. However, the 10-km resolution is insufficient to depict aerosol variation on local or urban scales, due to inherent aerosol variability as well as complex surface terrain. In this study, we have modified the MODIS algorithm to retrieve aerosol optical depth (AOD) at 1-km resolution over Hong Kong, a city of just over 1000 km/sup 2/ with very complex surface features. Accompanied by the increased spatial resolution are new aerosol models derived with single-scattering albedo (SSA) around 0.91-0.94 to accommodate higher aerosol absorption encountered in Hong Kong than that was presumed for MODIS standard products (SSA/spl sim/0.97) over the region. The derived AOD data are compared to handheld Microtops II sunphotometer observations at the Hong Kong University of Science and Technology and other locations across Hong Kong. Retrieval errors within 15% to 20% of sunphotometer measurements are found. Moreover, when compared with the standard 10-km AOD products, the 1-km AOD data are much better correlated with PM/sub 10/ measurements across Hong Kong, suggesting that the new 1-km AOD data can be used to better characterize the particulate matter distribution for cities like Hong Kong than the MODIS standard products.  相似文献   

10.
本文由在地面实测的气溶胶光学厚度与海面反射率计算出厦门海域大气层顶0.55μm波段大气散射辐射的空间分布与0.3-3.0μm地面总辐射,计算的地面总辐射与辐射总表的测量值有较好的一致性。  相似文献   

11.
Retrieval of land-surface temperature (LST) using data from the METEOSAT Second Generation-1 (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) requires adequate estimates of land-surface emissivity (LSE). In this context, LSE maps for SEVIRI channels IR3.9, IR8.7, IR10.8, and IR12.0 were developed based on the vegetation cover method. A broadband LSE map (3-14 /spl mu/m) was also developed for estimating longwave surface fluxes that may prove to be useful in both energy balance and climate modeling studies. LSE is estimated from conventional static land-cover classifications, LSE spectral data for each land cover, and fractional vegetation cover (FVC) information. Both International Geosphere-Biosphere Program (IGBP) Data and Information System (DIS) and Moderate Resolution Imaging Spectrometer (MODIS) MOD12Q1 land-cover products were used to build the LSE maps. Data on LSE were obtained from the Johns Hopkins University and Jet Propulsion Laboratory spectral libraries included in the Advanced Spaceborne Thermal Emission and Reflection Radiometer spectral library, as well as from the MODIS University of California-Santa Barbara spectral library. FVC data for each pixel were derived based on the normalized differential vegetation index. Depending on land cover, the LSE errors for channels IR3.9 and IR8.7 spatially vary from /spl plusmn/0.6% to /spl plusmn/24% and /spl plusmn/0.1% to /spl plusmn/33%, respectively, whereas the broadband spectrum errors lie between /spl plusmn/0.3% and /spl plusmn/7%. In the case of channels IR10.8 and IR12.0, 73% of the land surfaces within the MSG disk present relative errors less than /spl plusmn/1.5%, and almost all (26%) of the remaining areas have relative errors of /spl plusmn/2.0%. Developed LSE maps provide a first estimate of the ranges of LSE in SEVIRI channels for each surface type, and obtained results may be used to assess the sensitivity of algorithms where an a priori knowledge of LSE is required.  相似文献   

12.
The Moderate Resolution Imaging Spectroradiometer (MODIS) Level-3 optical thickness and effective radius cloud product is a gridded 1/spl deg//spl times/1/spl deg/ dataset that is derived from aggregation and subsampling of every fifth pixel, along both spatial directions, of Level-2 orbital swath data (Level-2 granules). The present study examines the impact of this subsampling on the mean, standard deviation, and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 subsampling does not affect the various quantities investigated to the same degree, with second-order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or zonal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal (e.g., monthly) and/or spatial (e.g., zonal) averaging is performed.  相似文献   

13.
The intensity-dependent response of nonlinear Bragg-periodic epitaxially-grown InGaAs-InAlGaAs-based optical elements is reported over a broad spectral range 1.3-1.6 /spl mu/m. Large changes in the transmittance and reflectance are observed as a function of incident power. Over most of this spectral region, the nonlinear response is dominated by the saturation of absorption. In the vicinity of 1.5 /spl mu/m, the optical elements exhibit fluence-dependent Bragg diffraction. For low incident powers, the indices of refraction of structures are uniform and no coherent scattering takes place. With increased incident power a Bragg grating appears, resulting in the emergence of a fluence-dependent stopband in the transmittance and reflectance spectra.  相似文献   

14.
Calculations show that significant optical scattering loss persists as standard quarter-wave (800 /spl Aring/) thick, dielectrically apertured vertical cavity laser diameters are reduced below 4 /spl mu/m and that thinner apertures can reduce the scattering loss, By using a thin (300 /spl Aring/) AlAs-oxide defined aperture, optical scattering loss has been dramatically reduced over the quarter-wave AlAs-oxide defined vertical-cavity laser. The optical loss reduction results in 2.3 /spl mu/m diameter lasers with differential efficiencies of 0.43 (80% of the value of broad-area lasers) and continuous-wave single-mode powers of 1.2 mW.  相似文献   

15.
Remote sensing of suspended sediments and shallow coastal waters   总被引:8,自引:0,他引:8  
Ocean color sensors were designed mainly for remote sensing of chlorophyll concentrations over the clear open oceanic areas (Case 1 water) using channels between 0.4-0.86 /spl mu/m. The Moderate Resolution Imaging Spectroradiometer (MODIS) launched on the National Aeronautics and Space Administration Terra and Aqua spacecrafts is equipped with narrow channels located within a wider wavelength range between 0.4-2.5 /spl mu/m for a variety of remote sensing applications. The wide spectral range can provide improved capabilities for remote sensing of the more complex and turbid coastal waters (Case 2 water) and for improved atmospheric corrections for ocean scenes. We describe an empirical algorithm that uses this wide spectral range to identify areas with suspended sediments in turbid waters and shallow waters with bottom reflections. The algorithm takes advantage of the strong water absorption at wavelengths longer than 1 /spl mu/m that does not allow illumination of sediments in the water or a shallow ocean floor. MODIS data acquired over the east coast of China, west coast of Africa, Arabian Sea, Mississippi Delta, and west coast of Florida are used.  相似文献   

16.
Combining data sets from multiple satellite sensors is a powerful method for studying Earth-atmosphere problems. By fusing data, we can utilize the strengths of the individual sensors that may not be otherwise possible. In this paper, we provide the framework for combining level 2 data products, using data from three sensors aboard the National Aeronautics and Space Administration (NASA)'s Terra satellite. These data include top-of-the-atmosphere (TOA) radiative energy fluxes obtained from the Clouds and the Earth's Radiant Energy System (CERES), aerosol optical thickness from the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS), and aerosol properties from the Multi-angle Imaging SpectroRadiometer (MISR). The CERES Single Scanner Footprint (SSF) contains the pixel level CERES TOA fluxes and the level 2 MODIS aerosol data. We specifically focus upon fusing the CERES SSF with the MISR aerosol products. Although this project was undertaken specifically to address aerosol research, the methods employed for fusing data products can be used for other problems requiring synergistic data sets. We present selected case studies over different aerosol regimes and indicate that multisensor information provides value-added information for aerosol research that is not available from a single sensor.  相似文献   

17.
The first results obtained from the aerosol-cloud retrieval algorithm (developed at the University of Bremen) are presented. The algorithm enables the observation of the regional characteristics of aerosol and cloud optical thickness both over land and ocean surfaces. The aerosol and cloud optical thickness over Western Europe is derived from the high-resolution SeaWiFS data for October 11, 2001 (11:30 UTC). The most probable value of the aerosol optical thickness was found to be equal approximately 0.25. The frequency distributions of the aerosol and cloud optical thickness are skewed and have long tails for larger optical thickness. It was found that retrieved values of the aerosol optical thickness at wavelengths 0.412 and 0.440 /spl mu/m are close to those measured by five ground-based instruments placed at different locations. The problems related to the retrieval of the atmospheric optical thickness from space are discussed.  相似文献   

18.
Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo, and direct-beam directional hemispherical (black-sky) albedo from observations acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard the National Aeronautics and Space Administration's Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which curtails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, climate models, and global change research projects. An ecosystem-dependent temporal interpolation technique is described that has been developed to fill missing or seasonally snow-covered data in the official MOD43B3 albedo product. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data. The resulting snow-free value-added products provide the scientific community with spatially and temporally complete global white- and black-sky surface albedo maps and statistics. These products are stored on 1-min and coarser resolution equal-angle grids and are computed for the first seven MODIS wavelengths, ranging from 0.47-2.1 /spl mu/m and for three broadband wavelengths 0.3-0.7, 0.3-5.0, and 0.7-5.0 /spl mu/m.  相似文献   

19.
Natural resource managers clamor for detailed reef habitat maps for monitoring smaller scale disturbances in reef communities. Coastal ocean color remote sensing techniques permit benthic habitats to be explored with higher resolution than ever before. The objective of this research was to develop an accurate benthic habitat map for an area off the northwest coast of Roatan Island, Honduras, using high-resolution multispectral IKONOS data. Atmospheric (Rayleigh and aerosol path radiance) and water column corrections (water depth and water column attenuation) were applied to the imagery, making it a robust method for mapping benthic habitats. Water depth for each pixel was calculated based on a site-specific polynomial model. A mechanistic radiative transfer approach was developed that removed the confound effect of the water column (absorption and scattering) from the imagery to retrieve an estimate of the bottom reflectance (albedo). Albedos were /spl les/ 12% for seagrass benthos, 12% to 24% for coral areas, and /spl ges/ 24% for sand-dominated areas. The retrieved bottom albedos were then used to classify the benthos, generating a detailed map of benthic habitats, followed by accuracy assessment.  相似文献   

20.
A component of the Atmospheric Infrared Sounder (AIRS) instrument system is the AIRS/Visible Near InfraRed (Vis/NIR) instrument. With a nadir ground resolution of 2.28 km and four channels, the Vis/NIR instrument provides diagnostic support to the infrared retrievals from the AIRS instrument and several research products, including surface solar flux studies. The AIRS Vis/NIR is composed of three narrowband (channel 1: 0.40-0.44 /spl mu/m; channel 2: 0.58-0.68 /spl mu/m, and channel 3: 0.71-0.92 /spl mu/m) and one broadband (channel 4: 0.49-0.94 /spl mu/m) channel, each a linear detector array of nine pixels. It is calibrated onboard with three tungsten lamps. Vicarious calibrations using ground targets of known reflectance and a cross-calibration with the Moderate Resolution Imaging Spectroradiometer (MODIS) augment the onboard calibration. One of AIRS Vis/NIR's principal supporting functions is the detection of low clouds to flag these conditions for atmospheric temperature retrievals. Once clouds are detected, a cloud height index is obtained based on the ratio (channel 2 - channel 3)/channel 1 that is sensitive to the partitioning of water vapor absorption above and below clouds. The determination of the surface solar radiation flux is principally based on channel 4 broadband measurements and the well-established relationship between top-of-the atmosphere (broadband) radiance and the surface irradiance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号