首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
基于支持向量域描述的学习分类器   总被引:2,自引:1,他引:2  
文章在分析支持向量域描述的基础上发展了一类基于描述的学习分类器.该算法在训练时通过在高维特征空间中求取所描述的训练样本的超球体边界,然后通过该边界对样本数据进行分类.文章所获得的学习算法和支持向量机(SVM)和序列最小优化(SMO)算法相比,不仅降低了样本的采集代价,而且在训练速度上有了很大提高.在CBCL人脸库和USPS手写数字识别的实验中,给出了该算法和SVM、SOM算法的实验对比结果,说明了该学习算法的有效性。  相似文献   

2.
目标分类器是水下目标自动识别系统的重要组成部分,目前水下目标分类的方法主要有统计分类、神经网络和专家系统等三大类的分类方法。支持向量机(SVM,Support Vector Machine)是根据统计理论提出的一种新的算法,该算法具有良好的泛化性能,不仅对训练样本的分类性能较好,对未知的检验样本同样具有好的分类效果,特别适用于小样本数据的分类。本文将该算法推广至多分类情况,并对三类水声信号样本进行分类试验。实验结果表明,该算法可以有效的避免“维数灾难”问题,且分类正确率高于传统的神经网络分类器。  相似文献   

3.
为了精确地寻找活动形状模型中特征点的新位置,提出了一种基于支持向量机分类器的活动形状模型用于人脸特征点定位,即把寻找特征点新位置的任务转化为分类问题.起初,这是典型的两类分类问题,但两类分类器寻找特征点新位置效果并不理想.因此进一步提出把两类分类问题转化为多类分类问题.为每一个特征点训练一个支持向量机多类分类器,并用此分类器寻找该特征点新位置.实验结果表明,基于支持向量机多类分类器的活动形状模型比原始活动形状模型更为精确,稳健.  相似文献   

4.
介绍了车牌识别的发展趋势,回顾了车牌识别技术的研究历史和现状,介绍了支持向量机的原理,简要叙述了以支持向量机为基础的车牌识别系统的结构。  相似文献   

5.
李胜后  钟蕾 《信息技术》2008,32(3):55-57
提出了一种将支持向量机分类和最近邻分类相结合的方法,形成了一种新的分类器.实验结果表明使用支持向量机结合最近邻分类的分类器分类比单独使用支持向量机分类具有更高的分类准确率,同时可以较好地解决应用支持向量机分类时核函数参数的选择问题.  相似文献   

6.
《现代电子技术》2016,(7):89-92
针对神经网络方法在计算机网络安全评价问题方面存在的不足,提出了一种新的基于支持向量回归机的计算机网络安全评价方法。首先探讨了指标体系构建的原则,进一步建立了计算机网络安全评价指标体系,然后给出了指标的规范化方法并对计算机网络安全等级进行了划分,最后构建了基于支持向量回归机的计算机网络安全评价模型并给出了仿真实例。仿真实例的结果表明,所建立的评价模型具有较强的泛化能力,预测的精度较高。  相似文献   

7.
白宁 《现代电子技术》2013,(24):22-24,28
针对支持向量机(svM)模型不能有效处理海量数据挖掘的问题,提出一种改进的基于主动学习的支持向量机(AL_SVM)方法。该方法首先将训练集随机划分为多个独立同分布的子集,并选择其中一个子集作为初始训练集来训练SVM得到初始分类器和支持向量集,然后根据已经得到的分类器信息在剩余样本集中选择对于分类器改进作用最大的有价值样本。并与已得到的支持向量集合并构成新训练集,以更新分类器,从而在保留重要支持向量信息的前提下,去除大量不重要的支持向量,一定程度上避免了过学习问题,提高了学习效率。实验表明,AL_SVM方法能够在保持学习器泛化能力的同时提高其学习效率。  相似文献   

8.
《现代电子技术》2016,(23):148-151
针对传统方法和神经网络方法在电能质量评估方面存在的不足,提出了一种新的基于支持向量回归机的电能质量评估方法。依据电能质量标准和有关文献建立了电能质量评估指标体系,给出了电能质量评估指标的等级区间。基于支持向量回归机的原理和电能质量评估指标,建立了基于支持向量回归机的电能质量评估模型。应用实例的仿真结果表明,所建立的评估模型具有较强的推广能力,得出的评估结果与其他评估方法相比更为合理可信。  相似文献   

9.
陈素根  吴小俊 《电子学报》2017,45(2):408-416
针对投影孪生支持向量机(Projection Twin Support Vector Machine,PTSVM)在训练和求解过程中存在的问题,提出了一类改进的投影孪生支持向量机(Improved PTSVM),简称为IPTSVM.该文首先构造了改进的线性投影孪生支持向量机,然后利用核技巧轻松将其推广到了非线性形式.本文的主要贡献有:(1)提出了投影孪生支持向量机的新模型,克服了原始PTSVM在训练之前需要求解两个逆矩阵的问题;(2)继承了传统SVM(Support Vector Machine)的精髓,利用核技巧直接将线性IPTSVM推广到非线性形式;(3)引入了一个新的参数,可以调节模型的性能,提高了IPTSVM的分类精度.实验结果表明,与PTSVM算法相比较,IPTSVM不仅提高了分类精度,而且克服了PTSVM的一些不足.  相似文献   

10.
支持向量机是在统计学理论基础上提出的一种新的机器学习方法,由于其出色的学习性能,该技术已成为机器学习界的研究热点,并成功地应用在文本分类、图像识别、生物信息处理等领域。这里简要介绍了支持向量机算法及其应用,并且讨论了其未来的发展方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号