首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
提出了适用于MMIC设计一类新型共面传输线,它包括梯形屏蔽共面波导(SMCPW)梯形屏蔽共面耦合线(SMCCL)共面耦全梯形屏蔽线(CCSML)推导出用于计算这些传输线的TEM参数的解析公式,数值计算结果显示了此类共面传输线的性质。  相似文献   

2.
介质参数测试的关键理论步骤是求解相应的电磁逆问题。本文利用等效传输线法导出了已知双轴各向异性电磁材料复介电常数张量ε^-和复磁导率张量μ^-,计算出反射系数和透射系数(正问题)的理论公式后,提出了一种新的求解逆问题的理论方法。由介质对正入射TE、TM波的反射系数与透射系数,可用公式直接反演得到ε^-和μ^-的复分量εx、μy和εy,μx然后利用介质对斜入射TE、TM波的透射系数由大为简化的反演算法迭代求解它们的z分量εz和μz。计算机模拟实验给出了比较理想的结果。  相似文献   

3.
应用多端口网络理论,把孔缝屏蔽腔和腔内传输线一起等效成多天线系统,基于天线的互易定理,提出了快速预测孔缝屏蔽腔内多导体传输线负载上的最大感应电流的方法.由于避免了孔缝屏蔽腔内传输线负载上感应电流的直接全波分析,计算效率显著提高.文中计算了矩形屏蔽机箱上开孔尺寸与形状、机箱大小、传输线在机箱内位置等参数改变下屏蔽机箱内传输线负载上的最大感应电流响应.与直接全波仿真结果比较,验证了方法的有效性.  相似文献   

4.
为了得到1维光子晶体中TM波的传输公式,采用传输矩阵的方法和电磁波的边界条件,推导出TM波在介质层中的特征矩阵及其反射系数和透射系数公式。结果表明,用TE波反射系数和透射系数公式做代换的方法不能得到正确的TM波的反射系数和透射系数公式;对推导出TM波的反射系数和透射系数公式进行了分析,由TM波的反射系数和透射系数公式得出的光强透射率和反射率满足能量守恒;并且推出的TM波反射系数公式不仅能够反映反射波与入射波的数量关系,且能够反映反射波与入射波的位相关系。这些结果对研究1维光子晶体中TM波的传输性质是有帮助的。  相似文献   

5.
多层双各向同性媒质中电磁波的传输特性   总被引:2,自引:2,他引:0  
用不对称传输线模型分析了平面电磁波垂直入射于多层双各向同性媒质的反射和透射问题,导出了形式上较简单的计算多层双各向同性媒质界面反射和透射系数公式。为了便于和已有的文献结果相比较,给出计算实例,结果表明,用此公式得出的结果和文献结果一致,为计算多层双各向同性媒质的反射和透射带来方便;同时,对双各向同性媒质,非互易参数和手征参数的改变对反射和透射系数都有较大的影响。  相似文献   

6.
对薄膜支撑空腔型微屏蔽传输线进行分析,提出微屏蔽传输线的物理结构。为了验证微屏蔽传输线在毫米波应用的优势,利用类比平行耦合微带线滤波器的方法设计了一种4阶切比雪夫三线对称结构微屏蔽线滤波器。通过对该微屏蔽腔体结构进行HFSS仿真,得到中心频率35 GHz的宽带滤波器,带宽15 GHz,带内插损小于0.5 dB,带外抑制>40 dB@53 GHz,器件尺寸8.24 mm×1.5 mm×0.65 mm。该设计为基于平面传输线的滤波器在毫米波频段的实现提供了一种可行的方法。  相似文献   

7.
对应用于4×25 Gb/s电吸收调制器与DFB激光器集成光源阵列的微波传输线进行了设计.通过有限元法仿真,确定其最优结构.经优化后,采用引脚封装的多路传输线在30 GHz以内的传输损耗低于0.5 dB,反射系数低于-13 dB,并有效抑制了相邻信道间的串扰.对集成光源阵列的封装方案进行了研究,提出了一种合理高效的封装方案.  相似文献   

8.
传输线时域响应分析中的改进型NILT方法   总被引:5,自引:2,他引:3  
本文利用拉氏变换的推广定义及初值定理,获得一种传输线时域响应分析的改进型数字拉氏逆变换(NILT)方法。该方法采取了将分析时间分段并进行传输线初始条件重新设置的步骤,因而比传统的NILT方法精确、有效。  相似文献   

9.
分析了单一左、右手传输线的电路特性,并利用其非线性相位特性,设计了一种平面、低损耗的宽带180°移相功分器。首先通过调节单一左、右手传输线的结构参数,并与传统传输线进行相位比较,在单一左、右手传输线的通带内实现45°相位差,然后将4个传输线单元级联构建了180°移相器,最后采用180°移相器设计了相位差为180°移相功分器。移相功分器的测试结果表明,在3~8.3GHz内,反射系数小于-10dB,输出端口间的隔离度大于17dB,输出端口间的幅度差小于0.6dB,相位差为180°±5°。该结构性能优良,制作成本低,适用于宽带天馈系统。  相似文献   

10.
为了提高设备中电子元件抵御来自外界和内部其他元件的电磁干扰,根据传输线理论,将双层加载电路板屏蔽腔体模型转换为电路图,利用电路图推导出腔体中心屏蔽效能的等效公式。利用Matlab生成传输线法屏蔽效能曲线,并通过仿真软件CST建模仿真,仿真结果与Matlab输出曲线良好吻合,验证了公式的正确性。运用CST研究了一些因素如电路板大小、数量、放置方式以及距孔缝的距离对屏蔽效能的影响。为了更加贴合实际,采用加载集成运算放大电路的印制电路板来研究腔体屏蔽效能以及腔体对电路板功能的影响,最后提出了一些提高屏蔽效能的方法。  相似文献   

11.
The paper considers the reverberation chamber (RC) method for the measurement of the shielding effectiveness (SE) of coaxial cables with braided shields. In particular, the voltage at the cable termination is numerically computed and compared to that measured in an RC. The RC field is represented by a finite summation of random plane waves, and a finite-difference time-domain (FDTD) code is used to calculate the outer shield current induced by the RC field. The knowledge of the shield current distribution allows the determination of the voltage at the cable termination's internal circuit after a proper numerical averaging. It is then compared to the measured voltage averaged over stirrer rotations. The method is applied to a commercially available cable model RG58, and using the nominal value for the transfer impedance of this cable type gives results in a satisfactory agreement with the measurements. Finally, the possibility of recovering the transfer impedance from the measured SE of the RC is discussed.  相似文献   

12.
垂直入射均匀平面波的多层平板屏蔽效能分析   总被引:2,自引:0,他引:2  
路宏敏  薛梦麟 《微波学报》1999,15(2):115-120,126
本文基于电磁场方法,详细导出多层平板屏蔽体对垂直入射均匀平面波的屏蔽效能计算公式。此外,提出计算屏蔽效能时,集肤深度和屏蔽体厚度的约束关系,给出用作计算机机箱的几种常用材料的屏蔽效能计算实例。  相似文献   

13.
The problem of low-frequency shielding of a loop axially perpendicular to a plane shield of infinite extent is analyzed by 1) the thin shield work of S. Levy, 2) solution of the vector wave equation, and 3) application of the transmission theory of shielding of Schelkunoff. Experimental data are obtained and compared with results of parts 1) and 3) in the frequency range 100 Hz to 50 kHz. The first analytical technique is not general, and the limits of applicability of the results are discussed. In the second solution, which is general, expressions are derived for the total electric and magnetic fields on both sides of and within the shield. The resulting expression for shielding effectiveness is not solved because of its complexity. The results of the third theory are adapted to the problem. The shielding effectiveness expression S = R + A + B is computer evaluated for the six shields considered (1/16-inch and 1/8-inch thick aluminum, copper, and steel). Although some approximations are made, this analytical method is the most useful in predicting the insertion loss of the shield, since the theory includes those parameters neglected in the first analytical technique.  相似文献   

14.
The shielding performance of an infinitely large, periodically perforated plane shield is investigated, both theoretically and experimentally. Attention is focused upon the near-field characterization by using two loop antennas at both sides of the shield. The electromagnetic coupling between the two loops is analyzed numerically using a plane-wave spectral representation of the radiated field and the method of moments. Comparison of these numerical results with near-field measurements yields a very good agreement up to high frequencies. The predicted classical far-field shielding effectiveness drastically overestimates the near-field shielding performance of the screen  相似文献   

15.
针对磁屏蔽体在低频脉冲磁场环境中可能存在的磁饱和问题,利用试验方法开展了磁饱和效应研究,证实了常规工程屏蔽体可在低频脉冲磁场环境中达到磁饱和状态,并通过观测屏蔽效能的变化获得了磁饱和规律,同时分析了磁饱和效应对屏蔽效能的影响及其与屏蔽体的材料磁导率、壳体厚度、外形尺寸等参数的关系. 研究表明:磁屏蔽体屏蔽效能在磁饱和效应影响下,呈现出明显的动态变化特点,具有与屏蔽壳体磁导率类似的变化趋势;壳体厚度2 mm以内、长宽高为2 m×2 m×2 m左右的屏蔽体在上升时间为300 μs、持续时间为1.2 ms的磁场环境中,达到磁饱和状态的磁化场强度约为10 mT,其磁饱和难易程度与磁导率及外形尺寸负相关,与壳体厚度正相关. 试验研究结果与理论分析结论一致,可为磁屏蔽体的科学合理设计提供参考,具有较高的工程应用价值.  相似文献   

16.
为研究任意入射角度平面波对多面开孔腔体的孔缝耦合效应,根据矢量分析和矩形波导内场强分布对等效传输线法进行了改进,计算了多面开孔腔体内任意位置的屏蔽效能。将改进等效传输线法计算结果与CST仿真结果、实验测量结果进行比较,验证了改进等效传输线法的正确性,相比数值计算方法,改进等效传输线法所需计算时间和内存更少。采用改进等效传输线法对相同体积不同尺寸的多面开孔腔体的屏蔽效能进行了研究,结果表明:在相同体积下,腔体为正方体时的屏蔽效能和其他尺寸腔体的屏蔽效能基本一致,但是正方形的屏蔽效能极小值点大大减少,从而减少了电子设备受电磁干扰的几率。  相似文献   

17.
An analytical program for calculating the field distribution about a microstrip transmission line bounded by a shielding wall is used to calculate the impedance, velocity, and attenuation parameters. The program input parameters are the dimensions of the strip and shielding wall and the relative dielectric constant of the substrate material. The field distribution about the strip is integrated to find the charge density on the strip and walls with and without the dielectric substrate. From these two calculations, the relative velocity and impedance can be calculated.  相似文献   

18.
An analytical program for calculating the field distribution about a microstrip transmission line bounded by a shielding wall is used to calculate the impedance, velocity, and attenuation parameters. The program input parameters are the dimensions of the strip and shielding wall and the relative dielectric constant of the substrate material. The field distribution about the strip is integrated to find the charge density on the strip and walls with and without the dielectric substrate. From these two calculations, the relative velocity and impedance can be calculated.  相似文献   

19.
An analytical program for calculating the field distribution about a microstrip transmission line bounded by a shielding wall is used to calculate the impedance, velocity, and attenuation parameters. The program input parameters are the dimensions of the strip and shielding wall and the relative dielectric constant of the substrate material. The field distribution about the strip is integrated to find the charge density on the strip and walls with and without the dielectric substrate. From these two calculations, the relative velocity and impedance can be calculated.  相似文献   

20.
结合GJB151A 中的测试标准,求解平面波照射下飞行器线束电磁敏感度(electromagnetic susceptibility ,EMS) 问题。采用时域有限差分法(Finite-Difference Time-Domain ,FDTD)求解空间电磁场在线束屏蔽层上产生的感应电流, 并将其作为多导体传输线(multi-transmission line ,MTL)方程中的激励源[6],计算线缆电磁脉冲响应。该算法可减少 网格剖分数目,节省计算资源,适合电大尺寸目标中线束问题的求解。最后,利用该方法分析了飞行器屏蔽效能和电 磁脉冲极化方式对线束EMS 的影响,得到了电缆设备端感应电压的频率响应特性。计算结果验证了该方法的高效性和 可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号