首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
曹旸  陈仁文 《压电与声光》2016,38(4):558-561
提出一种基于风致振动机理的微型风能采集装置,可将风能转换为电能加以利用。装置主要包括腔体和压电薄膜振动传感器,传感器一端固定,另一自由端附加细长圆柱体结构。利用细长圆柱体在气流中更易诱发涡激振动的原理,并结合结构体在一定气流条件下存在的其他风致振动机理,该装置可将风能转换为压电薄膜传感器的振动,然后进一步转换为电能。本结构设计尺寸为30mm×16mm×14mm,在风速为7m/s,外加负载为1.8 MΩ时,可以获得0.84μW的有效功率。同时可通过并列增加压电薄膜梁结构的数量来提高能量采集的效率。  相似文献   

2.
具有较大回收功率且回收功率不随负载变化是设计基于压电效应的能量回收接口电路需要考虑的主要因素,标准接口、SECE、串联SSHI、并联SSHI是常用的四种接口电路,其中SECE接口电路的回收功率与负载无关,基于此提出了一种新的压电能量回收接口电路——ESEI(Enhanced Synchronous Charge Extraction and Inversion Interface)接口电路,分析计算了该接口电路在恒定激振位移下的回收功率,并利用电子仿真软件Multisim对ESEI和四种接口电路的回收功率进行了仿真和比较。结果表明当负载大于临界值时,ESEI接口电路的回收功率达到最大值且与负载没有关系,该最大回收功率值约为SECE接口电路的4倍,仅小于并联SSHI接口电路。  相似文献   

3.
为了解决风致振动能量采集器风向采集单一的问题,在圆柱涡激振动的基础上将翼型档板加在悬臂梁的另一端,翼型挡板感受方向带动圆柱体转动,实现随风向的改变而改变。翼型挡板还可以在风能的激励下发生颤振,提高悬臂梁的振动效率。运用Solidworks对风能采集装置的转动部件进行仿真,通过改变风速的大小分析转动部件不同位置在流体中所受压力和压强,保证装置在自然环境中正常工作。  相似文献   

4.
基于压电效应的能量回收接口电路是能量回收系统的重要组成部分,经典的接口电路有标准接口、同步电荷提取电路(SECE)、并联同步开关电感电路(Parallel-SSHI)、串联同步开关电感电路(Series-SSHI)4种。提出并设计了一种新的接口电路——同步电荷提取和翻转电路(SCEI)接口电路,完成了该接口电路在恒定激振位移情况下回收功率的理论分析和计算,并利用电子仿真软件Multisim对SCEI和4种典型接口电路的回收功率进行了仿真和比较。结果表明,SCEI接口电路性能优越,其回收功率约是SECE电路的1.5倍,且与负载无关。  相似文献   

5.
为实现利用压电材料进行环境能量转换的目的,设计了一种能利用风能驱动多片压电片振动发电的装置。该装置通过风能驱动叶轮旋转,利用叶轮的旋转扭力迫使压电片振动,将压电片振动产生的电能通过整流电路、储能电容及DC-DC转换后供负载使用。通过实验对压电片在不同条件下的发电性能进行了测试,实验结果表明,该装置可实现多片压电片对环境能量的收集转换,为此类装置的设计提供了参考,同时也为压电环境能量采集技术提供了新思路。  相似文献   

6.
利用压电材料的环境振动能量收集技术具有能量密度大,无电磁干扰,较易收集的特点,该文提出一种自供电式压电振动能量采集电路,即基于耦合电感的同步电荷提取和电压翻转电路(SCET&VII),利用电子仿真软件LTspice对标准能量采集(SEH)电路、同步电荷提取(SECE)电路和SCET&VII进行仿真分析和对比。结果表明,在相同振动激励条件下,SCET&VII接口电路的负载取用功率是SEH的2.65倍、SECE的1.76倍,且功率输出不受负载影响,同时实现了能量收集中的开关动作能量自给。  相似文献   

7.
《压电与声光》2015,(2):349-353
设计了一种新的能量回收接口电路——双中间电容回收(DICH)接口电路,该电路由2个LC振荡电路、一个buck-boost转换器和2个中间电容组成。完成了在恒定激振位移情况下该电路的回收功率的理论分析和计算。利用Multisim仿真软件对标准电路、同步电荷提取(SECE)接口电路、并联-同步开关电感回收(SSHI)、串联-SSHI和DICH接口电路进行了仿真比较,结果表明,双中间电容回收(DICH)接口电路在最优负载时的最大回收功率仅小于并联-SSHI接口电路,约是SECE接口电路的2倍,且具有与SECE接口电路同样的特性,即回收功率与负载无关。  相似文献   

8.
任科明 《压电与声光》2015,37(2):522-525
设计了一种新的能量回收接口电路——双中间电容回收(DICH)接口电路,该电路由2个LC振荡电路、一个buck boost转换器和2个中间电容组成。完成了在恒定激振位移情况下该电路的回收功率的理论分析和计算。利用Multisim仿真软件对标准电路、同步电荷提取(SECE)接口电路、并联 同步开关电感回收 (SSHI)、串联 SSHI和DICH接口电路进行了仿真比较,结果表明,双中间电容回收(DICH)接口电路在最优负载时的最大回收功率仅小于并联 SSHI接口电路,约是SECE接口电路的2倍,且具有与SECE接口电路同样的特性,即回收功率与负载无关。  相似文献   

9.
辛菲  陈文革  张叶伟  卓磊 《压电与声光》2015,37(6):1012-1015
为了收集并利用汽车通过公路时所产生的振动能量,设计了一种利用压电材料的正压电效应采集环境振动能量,把振动能转换成电能的道路用振动发电装置。为使压电材料和道路振动能巧妙结合从而吸收最大的外部能量,获得高的发电效率,进行了以下研究:分析了压电材料变形量对发电能力的影响,并设计了能找到压电材料产生最大电能的最小变形量的模型。通过实验分析压电片的联接方式对电能输出的影响,得到了以并联为主,串联为辅的混联电路模型。设计并制作了道路用压电发电装置模型,通过模拟实验测得其发电功率为0.061 2 W,电容储电功率为0.026 4 W,发电效率为14.42%,电容储电效率6.21%。  相似文献   

10.
设计了一种可以减小匹配电感的双同步开关电感电路。建立了仿真模型,仿真结果表明该电路的能量采集的功率最大可达1.9 mW。与一般同步电荷提取电路相比,该电路可以使整体电路体积减小了2/3。将此电路应用于不同形状的压电片的振动能量俘获,发现振动频率和压电片的形状对该电路收集到的能量都有影响,当振动频率为40 Hz时,在矩形压电片上收集到的能量最多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号