首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose and analyze DMAP-FR, a mobility and service management scheme with failure recovery (FR) control in Mobile IPv6 systems. The basic idea behind DMAP-FR is to leverage access routers (ARs) running as regional mobility anchor points (MAPs) as in Hierarchical Mobile IPv6 (HMIPv6) for mobility and service management for mobile nodes (MNs). However, unlike HMIPv6, DMAP-FR allows the MAP of each MN to be determined dynamically based on the mobility and service characteristics of the MN and the failure behavior of ARs with the goal to minimize the network traffic. DMAP-FR incorporates fault tolerance mechanisms to allow the system to quickly recover from AR and MAP failures. We identify the best dynamic regional area size for the selection of MAP for each MN such that the overall network traffic due to servicing mobility, service and fault tolerance related operations is minimized. We demonstrate that DMAP-FR outperforms HMIPv6 for the same AR failure rate.  相似文献   

2.
Hierarchical Mobile IPv6 (HMIPv6) has been proposed by the Internet engineering task force (IETF) to compensate for such problems as handover latency and signalling overhead when employing Mobile IPv6 (MIPv6). HMIPv6 supports micro‐mobility within a domain and introduces a new entity, namely mobility anchor point (MAP) as a local home agent (HA). However, HMIPv6 has caused load concentration at a particular MAP and longer handover latency when an inter‐domain handover occurs. In order to solve such problems, this paper establishes a virtual domain (VD) of a higher layer MAP and proposes a MAP changing scheme. The MAP changing scheme enables complete handover by using binding‐update of the on‐link care of address (LCoA) only when inter‐domain handover occurs. In addition, the concentrated load of a particular MAP is distributed as well. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The Hierarchical Mobile IPv6 (HMIPv6), which is based on the Mobile IPv6 (MIPv6), has been proposed by IETF to reduce registration control signaling. It separates micro‐mobility from macro‐mobility with the help of an intermediate mobility agent, called the mobility anchor point (MAP), and exploits a Mobile Node's (MN's) spatial locality. However, all packets from a Correspondent Node (CN) to an MN are delivered through the MAP. That causes delay in packets delivery and the congestion of packets in the MAP so that it results in deterioration of network capability. To alleviate these problems, we propose a Hierarchical Mobile IPv6 protocol using not only spatial locality but also temporal locality. We introduce a profile for management of these locality information. According to the information in the profile, some packets are directly delivered to an MN, if MN seems to reside for a long time in the current subnet. Also, we introduce a handover scheme with the help of an L2 trigger, so that the proposed scheme takes nearly the same handover delay time as HMIPv6. The other contribution of this paper is to suggest a mathematical modeling and analysis of network traffic costs, MAP processing costs and handover latency for both HMIPv6 and the proposed scheme. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Hierarchical Mobile IPv6 (HMIPv6) has been proposed by the Internet Engineering Task Force (IETF) to reduce handoff latency and signaling overhead. In the new protocol, Mobility Anchor Point (MAP) receives all packets in place of Mobile Node (MN) and MAP services are transferred to Care of Address (CoA) of MN. However, a MAP may be a single point of performance bottleneck because the MAP should not only handle signaling traffic but also process data tunneling traffic for all MNs registered in a MAP domain. So, MAPs need MAP management scheme for the multimedia services or real time services. We propose a MAP selection scheme that can select different MAPs according to the traffic characteristics of MNs and a multilevel queue processing method that can process binding updates based on the priorities of queues in a MAP when MNs send BU. Quantitative results of the performance analysis show that our proposal can reduce the location update cost by 31% and the total cost by 14%. With the multilevel queues, we could reduce the total cost by 12% and 17% for D=4 and D=8 respectively.  相似文献   

5.
Adaptive Route Optimization in Hierarchical Mobile IPv6 Networks   总被引:1,自引:0,他引:1  
By introducing a mobility anchor point (MAP), Hierarchical Mobile IPv6 (HMIP6) reduces the signaling overhead and handoff latency associated with Mobile IPv6. However, if a mobile node (MN)'s session activity is high and its mobility is relatively low, HMIPv6 may degrade end-to-end data throughput due to the additional packet tunneling at the MAP. In this paper, we propose an adaptive route optimization (ARO) scheme to improve the throughput performance in HMIPv6 networks. Depending on the measured session-to-mobility ratio (SMR), ARO chooses one of the two different route optimization algorithms adaptively. Specifically, an MN informs a correspondent node (CN) of its on-link care-of address (LCoA) if the CN's SMR is greater than a predefined threshold. If the SMR is equal to or lower than the threshold, the CN is informed with the MN's regional CoA (RCoA). We analyze the performance of ARO in terms of balancing the signaling overhead reduction and the data throughput improvement. We also derive the optimal SMR threshold explicitly to achieve such a balance. Analytical and simulation results demonstrate that ARO is a viable scheme for deployment in HMIPv6 networks.  相似文献   

6.
Mobile IPv6 (MIPv6) is a work in progress IETF standard for enabling mobility in IPv6 networks and is expected to have wide deployment. We investigate an integrated mobility and service management scheme based on MIPv6 with the goal to minimize the overall network signaling cost in MIPv6 systems for serving mobility and service management related operations. Our design extends IETF work-in-progress Hierarchical Mobile IPv6 (HMIPv6) with the notion of dynamic mobility anchor points (DMAPs) for each mobile node (MN) instead of static ones for all MNs. These DMAPs are access routers chosen by individual MNs to act as a regional router to reduce the signaling overhead for intra-regional movements. The DMAP domain size, i.e., the number of subnets covered by a DMAP, is based on the MN’s mobility and service characteristics. Under our DMAP protocol, a MN interacts with its home agent and application servers as in the MIPv6 protocol, but optimally determines when and where to launch a DMAP to minimize the network cost in serving the user’s mobility and service management operations. We demonstrate that our DMAP protocol for integrated mobility and service management yields significantly improved performance over basic MIPv6 and HMIPv6.  相似文献   

7.
By introducing a mobility anchor point(MAP),hierarchical mobile IPv6(HMIPv6)reduces the binding update signaling cost associated with mobile IPv6,but there still exist deficiencies.For instance,a mobile node(MN)needs to orderly accomplish two binding updates with the MAP and home agent(HA)when the MN performs inter-MAP mobility.This results in a high signaling cost,thus affecting network performance.To reduce the inter-MAP binding update cost of idle MN in HMIPv6,an optimization scheme based on pointer forwarding with a threshold is proposed.The scheme can reduces the binding update cost of idle MN by using the binding update between MAP to replace several home binding updates.The signaling cost difference is derived by analyzing the cost of the basic scheme and the optimization scheme between two successive sessions.Simulation results show that,the optimization scheme can reduce the binding update signaling cost and improve the network performance as long as a suitable threshold is chosen.The discussions on the sensitivity of tele-parameters are also given.  相似文献   

8.
在下一代互联网中,需要使用AAA保证网络安全和网络资源合理使用,但是AAA与移动IPv6的结合,对切换性能及网络安全带来影响,而切换与安全是移动环境的关键问题。论文提出了新的解决方案,将HMIPv6与AAA结合,实现认证与注册过程的统一及本地认证,提高切换性能,并在注册与认证的过程中对消息进行加密,保证传输的安全。分析表明,本方案实现了AAA机制与移动管理机制安全高效的融合。  相似文献   

9.
In wireless/mobile networks, users freely and frequently change their access points (APs) while they are communicating with other users. To support the mobility of mobile nodes (MNs), Mobile IPv6 (MIPv6) is used to inform the information of MN's home address and current care‐of‐address (CoA) to its home agent. MIPv6 suffers from a long delay latency and high packet losses (PLs) because MIPv6 does not support micromobility. A Hierarchical Mobile IPv6 (HMIPv6) is proposed which provides micromobility and macromobility to reduce handoff latency (HL) by employing a hierarchical network structure. In this paper, we propose a cross‐layer partner‐based fast handoff mechanism based on HMIPv6, called the PHMIPv6 protocol. Our PHMIPv6 protocol is a cross‐layer, layer‐2 + layer‐3, and cooperative approach. A cooperative node, called a partner node (PN), is adopted in the PHMIPv6 protocol. A new layer‐2 trigger scheme used in the PHMIPv6 protocol accurately predicts the next AP and then invites a cooperative PN in the area of the next AP. With the cooperation of the PN, the CoA can be pre‐acquired and duplicate address detection operation can be pre‐executed by the PN before the MN initializes the handoff request. The PHMIPv6 protocol significantly reduces the handoff delay time and PLs. In the mathematical analysis, we verified that our PHMIPv6 protocol offers a better HL than the MIPv6, HMIPv6, and SHMIPv6 protocols. Finally, the experimental results also illustrate that the PHMIPv6 protocol actually achieves performance improvements in the handoff delay time, PL rate, and handoff delay jitter. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
移动IPv6分层管理费用的分析与自适应优化   总被引:8,自引:0,他引:8       下载免费PDF全文
彭雪海  张宏科  张思东 《电子学报》2004,32(10):1690-1693
为综合优化分层域内外以网络传输花费和带宽占用为代表的通信管理费用,论文对实施分层移动IPv6前后的费用变化进行了理论分析,得出了判决是否适宜使用分层移动管理的准则,并在此基础上提出一种允许移动节点动态地根据切换频度和流量强度等参数选择适宜的移动管理机制的自适应优化方案.仿真结果表明该方案能获得比静止使用某种移动管理机制更好的资源使用效率,可望具有较好的实际应用价值.  相似文献   

11.
To meet the increasing communication requirement for people in ubiquitous environments, some handover schemes and improvements were proposed by the IETF in order to support mobility effectively. FHMIPv6 combines the advantages of FMIPv6 and HMIPv6. This paper proposes an improved scheme based on FHMIPv6 which mainly implements a combined-detection function between Mobile Node (MN) and Mobility Anchor Point (MAP) and calculates the Normalized Edit Distance to analyze the motion trail and estimate the motion pattern of MN. According to the estimating result, MAP determines the way MN attaches to the new access point so as to reuse some previous handover information and intellectualize the handover process to avoid redundant binding updating. Simulation results based on Network Simulation 2 (NS2) show that this improved scheme can reduce the packet’s loss rate and handover latency, enhance the throughput and improve the network performance as a whole, especially for MN with the Ping-Pong motion pattern.  相似文献   

12.
Zohar Naor 《Ad hoc Networks》2013,11(7):2136-2145
A layer-3 mobility management scheme for an all-IP Wireless Access Network (WAN), and in particular for vehicular networks, is developed in this paper. The proposed method enables fast and reliable handoff. This feature is extremely important for high speed vehicular networks. Since vehicles are characterized by likely-predictable path, as well as very high speed, handoff events can and should be predicted in order to achieve fast and reliable handoff. As it is shown in this study, the proposed scheme can significantly reduce the packet loss ratio caused by frequent handoff events experienced by high speed vehicles. This scheme is topology-independent in the sense that it does not assume any network topology. The key idea is to use a topology-learning algorithm that enables to perform localized mobility management, by efficiently re-selecting a Mobility Anchor Point (MAP) node. The goal of the proposed scheme is to maintain a continues connection subject to user-dependent delay constraints, while minimizing the signaling cost and packet loss ratio associated with handoff events. This scheme is consistent with the existing mobility management schemes currently used in Mobile IP (MIP) and cellular networks, and it fits into the Hierarchical Mobile IPv6 (HMIPv6) scheme defined in Mobile IPv6 (MIPv6) for integrating mobile terminals with the Internet wired backbone.  相似文献   

13.
The mobility solution provided by Mobile IPv6 (MIPv6) imposes too much signaling load to the network and enforces large handoff latency to end user. Hierarchical MIPv6 (HMIPv6) on the other hand, is designed by organizing MIPv6 in layered architecture and performs better than MIPv6 in terms of handoff latency and signaling load. Observation shows that, there is still possibility to shrink the handoff latency and the signaling load by further extending HMIPv6 into multiple layers. To explore this possibility of enhanced performance through layered architecture, this paper aimed at mathematical exploration of an N-layered MIPv6 network architecture in order to figure out the optimal levels of hierarchy for mobility management. A widespread analysis is carried out on various parameters such as location update frequency and cost, handoff latency and packet delivery cost. Influence of queuing delay on handoff latency is examined by modeling M/M/1/K queue in the architecture and user mobility is modeled using Markov chain. Analytical investigation reveals that three levels of hierarchy in MIPv6 architecture provide an optimal solution for mobility management.  相似文献   

14.
A New Enhanced Fast Handover Algorithm in Hierarchical Mobile IPv6 Network   总被引:1,自引:0,他引:1  
1 Introduction MobileIPv6requirestheMobileNode (MN)toregisterwiththeHomeAgent (HA)andtheCorre spondentNode (CN)whenitchangesitspointofattachmentintheInternet[1~ 3] .Therefore ,thiscauseMobileIPv6toincurlongdelayintheregis tration process,andaddsignalingtraffictothebackbonenetworkespeciallywhentheHAandCNarefarawayfromtheMN .Inordertominimizethisdelay ,andthesignalingoverhead presentinMobileIPv6,literatures[4~7] proposeHierarchicalMobileIPv6(HMIPv6)architectureandafasthan dover…  相似文献   

15.
There has been a rapid growth in the need to support mobile nodes in IPv6-based networks. IETF has completed to standardize Mobile IPv6 (MIPv6) and Hierarchical Mobile IPv6 (HMIPv6) for supporting IPv6 mobility. Even though existing literatures have asserted that HMIPv6 generally improves MIPv6 in terms of handover speed, they do not carefully consider the details of the whole handover procedures. In this paper, based on the current IETF standards of both MIPv6 and HMIPv6, we conduct a comprehensive study of all IP-level handover procedures: movement detection, duplicate address detection, and location registration. Based on this study, we provide a mathematical analysis on MIPv6 and HMIPv6 performance in terms of handover speed. From the analysis, we reveal that the average HMIPv6 handover latency is not always lower than the average MIPv6 handover latency. Furthermore, even the intra-domain handover latency of HMIPv6 is not reduced much compared with MIPv6 handover latency. A finding of our analysis is that optimization techniques for movement detection and duplicate address detection are essential to shortening HMIPv6 handover latency and increasing the benefit of HMIPv6.
Sung-Gi MinEmail:
  相似文献   

16.
Multi-level mobile anchor points (MAP) architecture is deployed in large-scale wireless/mobile networks using HMIPv6 to achieve better mobility service, while selecting the most suitable serving MAP for the mobile nodes (MNs) to enhance the whole network performance has been a critical issue. An adaptive MAP selection based on active overload prevention (MAP-AOP) hence is proposed. The MAP periodically evaluates the load status by using dynamic weighted load evaluation algorithm, and then sends the load information to the covered access routers (AR) by using the expanded routing advertisement message in a dynamic manner. Taking achieving the load balancing among the available MAPs, the current serving AR executes the active overload prevention to select MAP candidates for the MN pending a handover, and then adaptively selects an optimal one from the candidates by comprehensively considering the system cost and the average handover latency caused by each candidate. The simulation conducted on the NS-2 platform indicates that MAP-AOP outperforms the comparative MAP selection schemes with the optimized system cost and average handover latency, and better load balancing.  相似文献   

17.
RSVP Extensions for Real-Time Services in Hierarchical Mobile IPv6   总被引:2,自引:0,他引:2  
The Mobile IPv6 (MIPv6) provides many great features, such as sufficient addressing space, mobility, and security; MIPv6 is one of the most important protocols for next generation mobile Internet. Simultaneously, with the rapid improvement of wireless technologies, the real-time multi-media IP services such as video on demand, videoconference, interactive games, IP telephony and video IP phone will be delivered in the near future. Thus, to furnish accurate QoS for real-time services is one of the most important thing in the next generation mobile Internet. Although RSVP, which is a resource reservation protocol, processes signaling messages to establish QoS paths between senders and receivers, RSVP was originally designed for stationary networks and not aware of the mobility of MNs. Therefore, this paper proposes a novel RSVP extension to support real-time services in Hierarchical Mobile IPv6 (HMIPv6) environments. For intra-site mobility, the concept of QoS Agent (QA) is proposed to handle the RSVP QoS update messages and provide the advanced reservation models for real-time services. For inter-site mobility, IP multicast can help to invite inter-site QAs to make pre-reservation and minimize the service disruption caused by re-routing the data path during handover. Simulation results show that the proposed scheme over HMIPv6 is more suitable for real-time services than the famous RSVP tunnel-based solution.  相似文献   

18.
We propose and analyze a cross-layer integrated mobility and service management scheme called DMAPwSR in Mobile IPv6 environments with the goal to minimize the overall mobility and service management cost for serving mobile users with diverse mobility and service characteristics. The basic idea of DMAPwSR is that each mobile node (MN) can utilize its cross-layer knowledge to choose smart routers to be its dynamic mobility anchor points (DMAPs) to balance the cost associated with mobility services versus packet delivery services. These smart routers are just access routers for MIPv6 systems except that they are capable of processing binding messages from the MN and storing the current location of the MN in the routing table for forwarding service packets destined to the MN. The MN’s DMAP changes dynamically as the MN roams across the MIPv6 network. Furthermore the DMAP service area also changes dynamically reflecting the MN’s mobility and service behaviors dynamically. Unlike previous mobility management protocols such as HMIPv6 that focus only on mobility management, DMAPwSR considers integrated mobility and service management. We develop an analytical model based on stochastic Petri nets to analyze DMAPwSR and compare its performance against MIPv6 and HMIPv6. We validate analytical solutions obtained through extensive simulation including sensitivity analysis of simulation results with respect to the network coverage model, the MN’s residence time distribution and the DMAP service area definition.  相似文献   

19.
 综合评价了多种移动IPv6扩展协议在基于端到端的TCP协议L3层的切换性能,模拟仿真了乒乓切换在MIPv6、FMIPv6、HMIPv6和FHMIPv6中的时延、吞吐量和丢包现象,提出了一种优化的FHMIPv6方案.该方案通过定义新的Hop-by-Hop 选项报头TM、 PCoA表和双向隧道表,实现MN的快速、平滑切换,比FHMIPv6进一步减少了时延,提高了吞吐量,降低了丢包率.  相似文献   

20.
Proxy Mobile IPv6 (PMIPv6) is a network based mobility protocol which has been designed to relieve the mobile nodes (MNs) from participating in the mobility process and to reduce the long handoff latency of the MIPv6 protocol. However, PMIPv6 incurs a long communication path due to the triangle routing problem, in which, all packets sent by MNs are obligated to pass through the local mobility anchor. Several solutions have been proposed to mitigate this issue. However, they still incur high signaling overhead to recover the Route Optimization (RO) status after handoff. In this paper, we propose a Cluster-Based RO (CBRO) scheme for the clustered architecture of the PMIPv6, in which, the Mobile Access Gateways (MAGs) are grouped into clusters with a distinguished Head MAG (HMAG) for each. In the proposed CBRO, the RO process is relied on the HMAGs to reduce the handoff latency while achieving a fast recovery of the optimized path after handoff. The proposed CBRO is evaluated analytically and compared with the basic PMIP and the current RO schemes. The obtained numerical results have shown that the proposed CBRO outperforms all other schemes in terms of signaling cost required to recover the RO status after handoff and the total cost performance metrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号