首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this letter, we introduce and investigate the RAKE combining receiver which is widely used in the code-division multiple access (CDMA) systems to the non-spectrum-spreading single-carrier transmission system. The initial estimate of the transmitted data is obtained by linear single-carrier equalizers, and then all the multipath signals are constructed from this initial solution and channel impulse response. By interference cancellation (IC) technique, we can acquire every multipath component in the received signal after cancelling the sum of all the other multipath signals constructed. Finally, all the components are combined together using selection combining (SC), equal gain combining (EGC) or maximal ratio combining (MRC), so that temporal diversity gain from the combined output can be obtained. Simulation results show that bit error rate (BER) performance of the new combining receiver based on zero forcing (ZF) and minimum mean square error (MMSE) equalizers can achieve the SNR gain dramatically in the SUI-5 wireless communication link.  相似文献   

2.
In this paper, we present a simple interference cancellation technique for the downlink of wideband code‐division multiple‐access (WCDMA) systems in multipath environment. With the same knowledge required by a RAKE receiver, the present method acts as an equalizer and cancels the interfering multipath signals from the received signal to retrieve the orthogonality property of the received signal. The present receiver has a simple structure and it has significant performance gain against the RAKE receiver. In addition, the noise enhancement is negligible when there is a line of sight path or the channel power delay profile has an exponential decaying form. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
For the code division multiple access (CDMA) downlink channel, the chip-level equalization has been considered in this paper. There is no interference after despreading if all spreading codes are orthogonal, as in IS-95. However, it cannot be true for a frequency-selective fading channel. In this case, the chip-level equalization can be applied to restore the orthogonality. We investigate the chip-level equalization using finite impulse response (FIR) equalizers for the mobile station with multiple receive antennas. A blind approach and the minimum mean square error (MMSE) approach with code-multiplexed pilot are considered. A generalized MMSE equalization, which combines the MMSE and blind approaches together, is also investigated. It is shown that the generalized MMSE equalizer can effectively increase the number of samples to track the variation of channel and thereby performs better when the coherence time is small. In addition, we derive closed-form solutions of the blind, MMSE, and generalized MMSE equalizers for given channels.  相似文献   

4.
DS-CDMA中基于MMSE相关器的RAKE接收机   总被引:1,自引:0,他引:1  
该文研究了DS-CDMA中用于频率选择性多径信道RAKE接收机的限阶MMSE相关器的性能,这种基于CSA(Correlations Subtractive Architecture)结构的MMSE相关器很适用于频率选择性多径信道。通过用MMSE柑关器取代普通多用户RAKE接收机的传统相关器,可以达到与扩展到多个码元的MMSE接收机相近的BER性能。CSA产生MMSE相关器不需要矩阵的逆变换,降低了运算复杂度,有利于直接取代普通RAKE接收机的相关器。  相似文献   

5.
We investigate a chip-level minimum mean-square-error (MMSE) decision-feedback equalizer (DFE) for the downlink receiver of multicode wideband code-division multiple-access systems over frequency-selective channels. First, the MMSE per symbol achievable by an optimal DFE is derived, assuming that all interchip interference (ICI) of the desired user can be eliminated. The MMSE of DFE is always less than or at most equal to that of linear equalizers (LE). When all the active codes belong to the desired user, the ideal DFE is able to eliminate multicode interference (MCI) and approach the performance of the single-code case at high signal-to-noise ratio (SNR) range. Second, we apply the hypothesis-feedback equalizer or tentative-chip (TC)-DFE in the multicode scenario. TC-DFE outperforms the chip-level LE, and the DFE that only feeds back the symbols already decided. The performance gain increases with SNR, but decreases with the number of active codes owned by the other users. When all the active codes are assigned to the desired user, TC-DFE asymptotically eliminates MCI and achieves single-user (or code) performance at high SNR, similarly, to the ideal DFE. The asymptotic performance of the DFE is confirmed through bit error rate simulation over various channels.  相似文献   

6.
The uplink and downlink performance of a digital cellular radio system that uses direct sequence code division multiple access is evaluated. Approximate expressions are derived for the area averaged bit error probability while accounting for the effects of path loss, log-normal shadowing, multipath-fading, multiple-access interference, and background noise. Three differentially coherent receivers are considered: a multipath rejection receiver, a RAKE receiver with predetection selective diversity combining, and a RAKE receiver with postdetection equal gain combining. The RAKE receivers are shown to improve the performance significantly, except when the channel consists of a single faded path. Error correction coding is also shown to substantially improve the performance, except for slowly fading channels  相似文献   

7.
In code-division multiple-access (CDMA) systems transmitting over time-varying multipath channels, both intersymbol interference (ISI) and multiple-access interference (MAI) arise. The conventional suboptimum receiver consisting of a bank of matched filters is often inefficient because interference is treated as noise. The optimum multiuser detector is too complex to be implemented at present. Four suboptimum detection techniques based on zero forcing (ZF) and minimum mean-square-error (MMSE) equalization with and without decision feedback (DF) are presented and compared. They combat both ISI and MAI. The computational complexity of all four equalizers is essentially the same. All four equalizers are independent of the size of the data symbol alphabet. It is shown that the performance of the MMSE equalizers is better than that of the corresponding ZF equalizers. Furthermore, the performance of the equalizers with DF is better than that of the corresponding equalizers without DF. The impairing effect of error propagation on the equalizers with DF is reduced by channel sorting  相似文献   

8.
A generalized RAKE receiver for interference suppression   总被引:6,自引:0,他引:6  
Currently, a global third-generation cellular system based on code-division multiple-access (CDMA) is being developed with a wider bandwidth than existing second-generation systems. The wider bandwidth provides increased multipath resolution in a time-dispersive channel, leading to higher frequency-selectivity. A generalized RAKE receiver for interference suppression and multipath mitigation is proposed. The receiver exploits the fact that time dispersion significantly distorts the interference spectrum from each base station in the downlink of a wideband CDMA system. Compared to the conventional RAKE receiver, this generalized RAKE receiver may have more fingers and different combining weights. The weights are derived from a maximum likelihood formulation, modeling the intracell interference as colored Gaussian noise. This low-complexity detector is especially useful for systems with orthogonal downlink spreading codes, as orthogonality between own cell signals cannot be maintained in a frequency-selective channel. The performance of the proposed receiver is quantified via analysis and simulation for different dispersive channels, including Rayleigh fading channels. Gains on the order of 1-3.5 dB are achieved, depending on the dispersiveness of the channel, with only a modest increase in the number of fingers. For a wideband CDMA (WCDMA) system and a realistic mobile radio channel, this translates to capacity gains of the order of 100%  相似文献   

9.
The well-known code division multiple access maximum likelihood receiver (MF-ML) uses a bank of matched filters as a generator of sufficient statistics for maximum likelihood detection of users transmitted symbols. In this paper, the bank of matched filters is replaced by a bank of adaptive minimum mean squared error (MMSE) filters as the generator of sufficient statistics. This formal replacement of the MF bank by the adaptive MMSE filter bank has significant conceptual consequences and provides improvement by several performance measures. The adaptive MMSE-ML receiver's digital implementation is significantly computationally simplified. The advantages of the proposed adaptive MMSE-ML receiver over the MF-ML receiver are: (1) ability to perform joint synchronization, channel parameter estimation, and signal detection where the signal is sent over an unknown, slowly time-varying, frequency-selective multipath fading channel; (2) increased information capacity in a multicellular environment; and (3) significantly improved bit error rate (BER) performance in a multicellular mobile communications environment. The information capacity and the BER of the proposed MMSE-ML receiver are analyzed. Numerical results showing the BER performance of the MMSE-ML receiver in a multipath channel environment are presented  相似文献   

10.
In this paper, we propose an original detection scheme for high rate short-range impulse radio ultra-wideband systems. The proposed receiver relies on both the introduction of the cyclic prefix at the transmitter and the use of a frequency domain multiuser detector at the receiver. Zero forcing (ZF) and minimum mean square error (MMSE) detection strategies have been investigated and compared with the classical RAKE, considering a scenario where several mobile terminals communicate with a base station in an indoor environment characterized by severe multipath propagation. The results show that the MMSE receiver achieves the best performance, irrespective of the number of active terminals, both in the uplink and in the downlink communications. Hence, the proposed approach is well suited in indoor wireless environments where the multipath propagation tends to increase the effects of both the inter-path and the inter-user interference.  相似文献   

11.
In downlink communication of a direct-sequence (DS) code-division multiple-access (CDMA) system, each user's short spreading codes are superimposed by base station's common long codes. This situation creates much difficulty in blind signal detection when multipath propagation occurs. However, when spatial/temporal diversity is available at the receiver, it is shown in this paper that subspace technique can be directly applied to estimate the common downlink multipath channel. Then, typical linear receivers, such as zero-forcing (ZF), minimum mean-square-error (MMSE) and RAKE receivers can be designed to detect the desired signal. Since the data covariance matrix is used but estimated from finite data samples, performance of both channel estimator and receivers gets perturbed. It is thus thoroughly and jointly analyzed by perturbation analysis. Justification of analysis and comparison of different receivers are also made through simulations.  相似文献   

12.
针对60 GHz芯片间无线互连信道中存在的多径衰落问题,将匹配滤波器和最小均方误差算法应用到60 GHz脉冲通信系统,重点分析多径信道下采用最小均方误差合并算法的RAKE接收机的误码性能。在IEEE 802.15.3c信道模型的基础上,对采用不同合并方式、不同干扰用户数目下的RAKE接收机误码性能进行了研究。仿真结果表明,随着干扰芯片数量的增加,引入匹配滤波器和最小均方误差算法的RAKE接收机不仅降低了接收机的采样率,而且有效提高了系统抗多用户干扰的能力,为芯片间无线互连系统的RAKE接收机设计提供了技术参考。  相似文献   

13.
The joint performance of a turbo decoder and RAKE receiver using the MAP algorithm depends on the accuracy of the channel reliability factor. In a high data rate/low processing gain environment, inherent interference that results from non-idealities of the RAKE receiver complicate the estimation of the channel reliability factor. The combined performance of a turbo decoder and RAKE receiver is analyzed in a timedispersive and time-varying channel with distinct multipath components. Approaches are examined for estimating the channel reliability factor using the limited information that is known by the RAKE receiver. The sensitivity of performance to SNR mismatches is computed. The impact of the processing gain and the number of multipath components on BER performance is analyzed along with the effect of the channel time coherence. By accounting for the non-ideal RAKE interference effects, improvements in the channel reliability factor calculation result in BER performance improvements on the order of 0.5-2 dB.  相似文献   

14.
This paper describes a spread-spectrum downlink RAKE receiver that computes data detection in the frequency domain. We assume a pilot signal is transmitted with data signals for channel sounding. The pilot signal does not degrade the receiver bit error rate (BER) performance because the receiver estimates the pilot signal and subtracts the estimated pilot signal from the received signal before data detection. A spreading code matched filter, a channel matched filter, and a sounding receiver are implemented by fast Fourier transform (FFT)-based matched filtering and integrated in a unified architecture. Monte Carlo simulation is used to evaluate the receiver BER performance in both a static channel and a mobile radio channel. Simulation results show that the RAKE receiver performs well in both kinds of channels  相似文献   

15.
We consider the downlink of a Universal Mobile Telecommunication System terrestrial radio access-wideband code division multiple access (UTRA-WCDMA) system and we investigate the performance of the conventional RAKE receiver. A multipath slowly Rayleigh fading channel is assumed. For the purpose of channel tap weight estimation, a common control physical channel, that is either serial or parallel multiplexed with the dedicated physical channels, is used. The receiver sensitivity to imperfect knowledge of the path delays, to the number of pilot symbols, and to the power ratio of pilot to data channels is also investigated. The system performance is evaluated by means of bit-error rates (BERs) derived using quadratic forms and characteristic functions for a BPSK modulation. The mean-squared estimation error (MSEE) of the channel tap weights is also computed and compared to the classical Cramer-Rao lower bound (CRLB). The mutual interference between pilot and data symbols is taken into account  相似文献   

16.
Modern wireless communications require an efficient spectrum usage and high channel capacity and high throughput. Turbo code, linear equalizers, multi-user detection and wideband code-division multiple access (WCDMA) are possible solutions to achieve spectral efficiency, high channel capacity, eliminate MAI, eliminate ISI and robustness against frequency selective fading. In this paper, we combine all these techniques and investigate BER performance. We propose a low complexity receiver structure for Single-input Single-output downlink cyclic prefix CP-WCDMA systems. It employs frequency domain interference cancellation schemes to mitigate the interference caused by the multipath fading channel. Also, the proposed scheme is developed for the downlink Turbo code CP-WCDMA system to maximize the throughput of the proposed system.  相似文献   

17.
Performance of coherent DS-CDMA with 2D-RAKE receiver   总被引:1,自引:0,他引:1  
The bit error rate (BER) of a coherent digital signal code-division multiple access system with a 2D-RAKE receiver is evaluated in a Rayleigh fading multipath channel. The numerical results indicate that, compared with the conventional RAKE receiver, the 2D-RAKE receiver could provide a significant capacity gain which is sensitive to the selection of spatiotemporal diversity fingers  相似文献   

18.
In this paper, we investigate the diversity, capacity and complexity issues of cooperative Zero-Padding (ZP)-Orthogonal Frequency Division Multiplexing (OFDM) communication. We consider cooperative ZP-OFDM communication over a multipath Rayleigh channel and with multiple Carrier Frequency Offsets (CFOs) existing at different relays. We use a cooperative tall Toeplitz scheme to achieve full cooperative and multipath diversity, while simultaneously combat the CFOs. Importantly, this full diversity scheme only requires Linear Equalizers (LEs), such as Zero-Forcing (ZF) and Minimum Mean Square Error (MMSE) equalizers, an issue which reduces the system complexity when compared to a Maximum-Likelihood Equalizer (MLE) or other near-MLEs. Theoretical analysis of the proposed cooperative tall Toeplitz scheme is provided on the basis of the analytical upper bound of the channel orthogonality deficiency derived in this paper. Utilizing only low-complexity linear equalizers, theoretical analysis and simulation results show that the proposed Toeplitz scheme achieves the full cooperative, multipath and outage diversity.  相似文献   

19.
The performance of a multiple-cell direct-sequence code division multiple-access cellular radio system is evaluated. Approximate expressions are obtained for the area-averaged bit error probability and the area-averaged outage probability for both the uplink and downlink channels. The analysis accounts for the effects of path loss, multipath fading, multiple-access interference, and background noise. Two types of differentially coherent receivers are considered: a multipath rejection receiver and a RAKE receiver with predetection selective combining. Macroscopic base station diversity techniques and uplink and downlink power control are also topics of discussion  相似文献   

20.
A digital spread-spectrum receiver design is presented for communication over multipath channels with severe Doppler shifts. The characteristics of the underwater channel relevant to spread-spectrum system design are discussed, and a channel model for short-range communications (less than 10 km) is defined. The receiver considered uses a digital coherent RAKE combiner, coupled with an extended Kalman filter (EKF)-based estimator for channel parameters and pseudonoise code delay. Receiver performance is evaluated by computing average bit-error rate (BER) versus iterations of the EKF joint estimator, using both fixed and time-varying channels. It is shown that the BER obtained using the EKF joint estimator closely tracks the optimum BER obtained when the channel, delay, and Doppler parameters are known exactly. Finally, the Cramer-Rao lower bound for time-invariant joint channel, delay, and Doppler estimation is derived, and compared with the ensemble averaged mean-squared error of the EKF estimator  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号