首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3D hierarchical heterostructure NiFe LDH@NiCoP/NF electrodes are prepared successfully on nickel foam with special interface engineering and synergistic effects. This research finds that the as‐prepared NiFe LDH@NiCoP/NF electrodes have a more sophisticated inner structure and intensive interface than a simple physical mixture. The NiFe LDH@NiCoP/NF electrodes require an overpotential as low as 120 and 220 mV to deliver 10 mA cm?2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH, respectively. Tafel and electrochemical impedance spectroscopy further reveal a favorable kinetic during electrolysis. Specifically, the NiFe LDH@NiCoP/NF electrodes are simultaneously used as cathode and anode for overall water splitting, which requires a cell voltage of 1.57 V at 10 mA cm?2. Furthermore, the synergistic effect of the heterostructure improves the structural stability and promotes the generation of active phases during HER and OER, resulting in excellent stability over 100 h of continuous operation. Moreover, the strategy and interface engineering of the introduced heterostructure can also be used to prepare other bifunctional and cost‐efficient electrocatalysts for various applications.  相似文献   

2.
The simultaneous and efficient evolution of hydrogen and oxygen with earth‐abundant, highly active, and robust bifunctional electrocatalysts is a significant concern in water splitting. Herein, non‐noble metal‐based Ni–Co–S bifunctional catalysts with tunable stoichiometry and morphology are realized. The engineering of electronic structure and subsequent morphological design synergistically contributes to significantly elevated electrocatalytic performance. Stable overpotentials (η10) of 243 mV (vs reversible hydrogen electrode) for oxygen evolution reaction (OER) and 80 mV for hydrogen evolution reaction (HER), as well as Tafel slopes of 54.9 mV dec?1 for OER and 58.5 mV dec?1 for HER, are demonstrated. In addition, density functional theory calculations are performed to determine the optimal electronic structure via the electron density differences to verify the enhanced OER activity is related to the Co top site on the (110) surface. Moreover, the tandem bifunctional NiCo2S4 exhibit a required voltage of 1.58 V (J = 10 mA cm?2) for simultaneous OER and HER, and no obvious performance decay is observed after 72 h. When integrated with a GaAs solar cell, the resulting photoassisted water splitting electrolyzer shows a certified solar‐to‐hydrogen efficiency of up to 18.01%, further demonstrating the feasibility of engineering protocols and the promising potential of bifunctional NiCo2S4 for large‐scale overall water splitting.  相似文献   

3.
The exploration of earth‐abundant and high‐efficiency bifunctional electrocatalysts for overall water splitting is of vital importance for the future of the hydrogen economy. Regulation of electronic structure through heteroatom doping represents one of the most powerful strategies to boost the electrocatalytic performance of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, a rational design of O‐incorporated CoP (denoted as O‐CoP) nanosheets, which synergistically integrate the favorable thermodynamics through modification of electronic structures with accelerated kinetics through nanostructuring, is reported. Experimental results and density functional theory simulations manifest that the appropriate O incorporation into CoP can dramatically modulate the electronic structure of CoP and alter the adsorption free energies of reaction intermediates, thus promoting the HER and OER activities. Specifically, the optimized O‐CoP nanosheets exhibit efficient bifunctional performance in alkaline electrolyte, requiring overpotentials of 98 and 310 mV to deliver a current density of 10 mA cm?2 for HER and OER, respectively. When served as bifunctional electrocatalysts for overall water splitting, a low cell voltage of 1.60 V is needed for achieving a current density of 10 mA cm?2. This proposed anion‐doping strategy will bring new inspiration to boost the electrocatalytic performance of transition metal–based electrocatalysts for energy conversion applications.  相似文献   

4.
Solar‐driven water splitting is a promising approach for renewable energy, where the development of efficient and stable bifunctional electrocatalysts for simultaneously producing hydrogen and oxygen is still challenging. Herein, combined with the hydrogen evolution reaction (HER) activity of a copper(I) complex and oxygen evolution reaction (OER) activity of cobalt‐based oxides, a type of 1D copper‐cobalt hybrid oxide nanowires (CuCoO‐NWs) is developed via a facile two‐step growth‐conversion process toward a bifunctional water splitting catalyst. The CuCoO‐NWs exhibit excellent catalytic performances for both HER and OER in the same basic electrolyte, with optimized low onset overpotentials and high current densities. The efficient HER activity is ascribed to the formation of Cu2O, while the activity for OER is primarily enabled by Co‐based oxides and abundant oxygen vacancies. The CuCoO‐NWs allow for the assembly of a water electrolyzer with strong alkaline media, with a current density of 10 mA cm?2 at 1.61 V. Further combination with a commercial silicon photovoltaic allows the direct use of solar energy for spontaneous water splitting with excellent stability for over 72 h, suggesting the potential as a promising bifunctional electrocatalyst for efficient solar‐driven water splitting.  相似文献   

5.
Developing low-cost and high-efficient bifunctional catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is greatly significant for water electrolysis. Here, Ni3N-CeO2/NF heterostructure is synthesized on the nickel foam, and it exhibits excellent HER and OER performance. As a result, the water electrolyzer based on Ni3N-CeO2/NF bifunctional catalyst only needs 1.515 V@10 mA cm−2, significantly better than that of Pt/C||IrO2 catalysts. In situ characterizations unveil that CeO2 plays completely different roles in HER and OER processes. In situ infrared spectroscopy and density functional theory calculations indicate that the introduction of CeO2 can optimizes the structure of interface water, and the synergistic effect of Ni3N and CeO2 improve the HER activity significantly, while the in situ Raman spectra reveal that CeO2 accelerates the reconstruction of OV (oxygen vacancy)-rich NiOOH for boosting OER. This study clearly unlocks the different catalytic mechanisms of CeO2 for boosting the HER and OER activity of Ni3N for water splitting, which provides the useful guidance for designing the high-performance bifunctional catalysts for water splitting.  相似文献   

6.
The development of efficient and low‐cost bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is highly desirable for electrochemical energy conversion. Herein, this study puts forward a new Co decorated N,B‐codoped interconnected graphitic carbon and carbon nanotube materials (Co/NBC) synthesized by direct carbonization of a cobalt‐based boron imidazolate framework. It is demonstrated that the carbonization temperature can tune the surface structure and component of the resultant materials and optimize the electrochemically active surface area to expose more accessible active sites, effectively boosting the electrocatalytic activity. As a result, the optimized Co/NBC shows superior bifunctional catalytic activity and stability toward OER and HER in 1.0 m KOH solution. Furthermore, the catalyst can serve as both the anode and cathode for water splitting to achieve a current density of 10 mA cm?2 at a cell voltage of 1.68 V. Experimental results and theoretical calculations indicate that the excellent activity of Co/NBC catalyst benefits from the synergistic effect of partial oxidation of metallic cobalt, conductive N,B‐codoped graphitic carbon and carbon nanotube, and the coupled interactions among these components. This work opens a promising avenue toward the exploration of boron imidazolate frameworks as efficient heteroatom‐doped catalysts for electrocatalysis.  相似文献   

7.
Ni–Fe bimetallic electrocatalysts are expected to replace existing precious metal catalysts for water splitting and achieve industrial applications due to their high intrinsic activity and low cost. However, the mechanism by which Ni and Fe species synergistically enhance catalytic activity remains obscure, which still needs further in-depth study. In this study, a highly active bi-functional electrocatalyst of Ni2P/FeP heterostructures is constructed on Fe foam (Ni2P/FeP-FF), clearly illustrating the effect of Ni on Fe species for oxygen evolution reaction (OER) and revealing the true catalytic active phase for hydrogen evolution reaction (HER). The Ni2P/FeP-FF only needs overpotentials of 217 and 42 mV to reach 10 mA cm−2 for OER and HER, respectively, exhibiting superior bi-functional activity for overall water splitting. The Ni can elevate the strength of Fe O on Ni2P/FeP-FF surface and promote the formation of high-valence FeOOH phase during OER, thus enhancing OER performance. Based on first-principles calculations and Raman characterizations, the Ni2P/Ni(OH)2 heterojunction evolved from Ni2P/FeP is identified as the real high active phase for HER. This study not only builds a near-commercial bifunctional electrocatalyst for overall water splitting, but also provides a deep insight for synergistic catalytic mechanism of Ni and Fe species.  相似文献   

8.
Exploring highly active and inexpensive bifunctional electrocatalysts for water‐splitting is considered to be one of the prerequisites for developing hydrogen energy technology. Here, an efficient simultaneous etching‐doping sedimentation equilibrium (EDSE) strategy is proposed to design and prepare hollow Rh‐doped CoFe‐layered double hydroxides for overall water splitting. The elaborate electrocatalyst with optimized composition and typical hollow structure accelerates the electrochemical reactions, which can achieve a current density of 10 mA cm?2 at an overpotential of 28 mV (600 mA cm?2 at 188 mV) for hydrogen evolution reaction (HER) and 100 mA cm?2 at 245 mV for oxygen evolution reaction (OER). The cell voltage for overall water splitting of the electrolyzer assembled by this electrocatalyst is only 1.46 V, a value far lower than that of commercial electrolyzer constructed by Pt/C and RuO2 and most reported bifunctional electrocatalysts. Furthermore, the existence of Fe vacancies introduced by Rh doping and the typical hollow structure are demonstrated to optimize the entire HER and OER processes. EDSE associates doping with template‐directed hollow structures and paves a new avenue for developing bifunctional electrocatalysts for overall water splitting. It is also believed to be practical in other catalysis fields as well.  相似文献   

9.
Highly active and stable bifunctional electrocatalysts for overall water splitting are important for clean and renewable energy technologies. The development of energy‐saving electrocatalysts for hydrogen evolution reaction (HER) by replacing the sluggish oxygen evolution reaction (OER) with a thermodynamically favorable electrochemical oxidation (ECO) reaction has attracted increasing attention. In this study, a self‐supported, hierarchical, porous, nitrogen‐doped carbon (NC)@CuCo2Nx/carbon fiber (CF) is fabricated and used as an efficient bifunctional electrocatalyst for both HER and OER in alkaline solutions with excellent activity and stability. Moreover, a two‐electrode electrolyzer is assembled using the NC@CuCo2Nx/CF as an electrocatalyst at both cathode and anode electrodes for H2 production and selective ECO of benzyl alcohol with high conversion and selectivity. The excellent electrocatalytic activity is proposed to be mainly due to the hierarchical architecture beneficial for exposing more catalytic active sites, enhancing mass transport. Density functional theoretical calculations reveal that the adsorption energies of key species can be modulated due to the synergistic effect between CoN and CuN. This work provides a reference for the development of high‐performance bifunctional electrocatalysts for simultaneous production of H2 and high‐value‐added fine chemicals.  相似文献   

10.
Janus type water‐splitting catalysts have attracted highest attention as a tool of choice for solar to fuel conversion. AISI Ni42 steel is upon harsh anodization converted into a bifunctional electrocatalyst. Oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are highly efficiently and steadfast catalyzed at pH 7, 13, 14, 14.6 (OER) and at pH 0, 1, 13, 14, 14.6 (HER), respectively. The current density taken from long‐term OER measurements in pH 7 buffer solution upon the electro‐activated steel at 491 mV overpotential (η) is around four times higher (4 mA cm?2) in comparison with recently developed OER electrocatalysts. The very strong voltage–current behavior of the catalyst shown in OER polarization experiments at both pH 7 and at pH 13 are even superior to those known for IrO2‐RuO2. No degradation of the catalyst is detected even when conditions close to standard industrial operations are applied to the catalyst. A stable Ni‐, Fe‐oxide based passivating layer sufficiently protects the bare metal for further oxidation. Quantitative charge to oxygen (OER) and charge to hydrogen (HER) conversion are confirmed. High‐resolution XPS spectra show that most likely γ?NiO(OH) and FeO(OH) are the catalytic active OER and NiO is the catalytic active HER species.  相似文献   

11.
Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of ?0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm?2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm?2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.  相似文献   

12.
Development of efficient, low‐cost, and durable electrocatalysts for the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is of significant importance for many electrochemical devices, such as rechargeable metal–air batteries, fuel cells, and water electrolyzers. Here, a novel approach for the synthesis of a trifunctional electrocatalyst derived from iron/cobalt‐containing polypyrrole (PPy) hydrogel is reported. This strategy relies on the formation of a supramolecularly cross‐linked PPy hydrogel that allows for efficient and homogeneous incorporation of highly active Fe/Co–N–C species. Meanwhile, Co nanoparticles are also formed and embedded into the carbon scaffold during the pyrolysis process, further promoting electrochemical activities. The resultant electrocatalyst exhibits prominent catalytic activities for ORR, OER, and HER, surpassing previously reported trifunctional electrocatalysts. Finally, it is demonstrated that the as‐obtained trifunctional electrocatalyst can be used for electrocatalytic overall water splitting in a self‐powered manner under ambient conditions. This work offers new prospects in developing highly active, nonprecious‐metal‐based electrocatalysts in electrochemical energy devices.  相似文献   

13.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are crucial reactions in energy conversion and storage systems including fuel cells, metal–air batteries, and electrolyzers. Developing low‐cost, high‐efficiency, and durable non‐noble bifunctional oxygen electrocatalysts is the key to the commercialization of these devices. Here, based on an in‐depth understanding of ORR/OER reaction mechanisms, recent advances in the development of non‐noble electrocatalysts for ORR/OER are reviewed. In particular, rational design for enhancing the activity and stability and scalable synthesis toward the large‐scale production of bifunctional electrocatalysts are highlighted. Prospects and future challenges in the field of oxygen electrocatalysis are presented.  相似文献   

14.
Making highly efficient catalysts for an overall ?water splitting reaction is vitally important to bring solar/electrical‐to‐hydrogen energy conversion processes into reality. Herein, the synthesis of ultrathin nanosheet‐based, hollow MoOx/Ni3S2 composite microsphere catalysts on nickel foam, using ammonium molybdate as a precursor and the triblock copolymer pluronic P123 as a structure‐directing agent is reported. It is also shown that the resulting materials can serve as bifunctional, non‐noble metal electrocatalysts with high activity and stability for the hydrogen evolution reaction (HER) as well as the oxygen evolution reaction (OER). Thanks to their unique structural features, the materials give an impressive water‐splitting current density of 10 mA cm?2 at ≈1.45 V with remarkable durability for >100 h when used as catalysts both at the cathode and the anode sides of an alkaline electrolyzer. This performance for an overall water splitting reaction is better than even those obtained with an electrolyzer consisting of noble metal‐based Pt/C and IrOx/C catalytic couple—the benchmark catalysts for HER and OER, respectively.  相似文献   

15.
Over the years, cobalt phosphates (amorphous or crystalline) have been projected as one of the most significant and promising classes of nonprecious catalysts and studied exclusively for the electrocatalytic and photocatalytic oxygen evolution reaction (OER). However, their successful utilization of hydrogen evolution reaction (HER) and the reaction of overall water‐splitting is rather unexplored. Herein, presented is a crystalline cobalt phosphate, Co3(OH)2(HPO4)2, structurally related to the mineral lazulite, as an efficient precatalyst for OER, HER, and water electrolysis in alkaline media. During both electrochemical OER and HER, the Co3(OH)2(HPO4)2 nanostructure was completely transformed in situ into porous amorphous CoOx (OH) films that mediate efficient OER and HER with extremely low overpotentials of only 182 and 87 mV, respectively, at a current density of 10 mA cm?2. When assemble as anode and cathode in a two‐electrode alkaline electrolyzer, unceasing durability over 10 days is achieved with a final cell voltage of 1.54 V, which is superior to the recently reported effective bifunctional electrocatalysts. The strategy to achieve more active sites for oxygen and hydrogen generation via in situ oxidation or reduction from a well‐defined inorganic material provides an opportunity to develop cost‐effective and efficient electrocatalysts for renewable energy technologies.  相似文献   

16.
The design of highly efficient, stable, and noble‐metal‐free bifunctional electrocatalysts for overall water splitting is critical but challenging. Herein, a facile and controllable synthesis strategy for nickel–cobalt bimetal phosphide nanotubes as highly efficient electrocatalysts for overall water splitting via low‐temperature phosphorization from a bimetallic metal‐organic framework (MOF‐74) precursor is reported. By optimizing the molar ratio of Co/Ni atoms in MOF‐74, a series of Cox Niy P catalysts are synthesized, and the obtained Co4Ni1P has a rare form of nanotubes that possess similar morphology to the MOF precursor and exhibit perfect dispersal of the active sites. The nanotubes show remarkable hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalytic performance in an alkaline electrolyte, affording a current density of 10 mA cm?2 at overpotentials of 129 mV for HER and 245 mV for OER, respectively. An electrolyzer with Co4Ni1P nanotubes as both the cathode and anode catalyst in alkaline solutions achieves a current density of 10 mA cm?2 at a voltage of 1.59 V, which is comparable to the integrated Pt/C and RuO2 counterparts and ranks among the best of the metal‐phosphide electrocatalysts reported to date.  相似文献   

17.
Developing bifunctional efficient electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is in high demand for the development of overall water‐splitting devices. In particular, the electrocatalytic performance can be largely improved by designing positive nanoscale‐heterojunction with well‐tuned interfaces. Herein, a novel top‐down strategy is reported to construct the oxide/sulfide heterostructures (N‐NiMoO4/NiS2 nanowires/nanosheets) as a multisite HER/OER catalyst. Starting with the NiMoO4 nanowires, nitridation in a controlled manner enables activation of Ni sites in NiMoO4 and then yields oxide/sulfide heterojunction by directly vulcanizing the highly composition‐segregated N‐NiMoO4 nanowires. The abundant epitaxial heterogeneous interfaces at atomic‐level facilitate the electron transfer from N‐NiMoO4 to NiS2, which further cooperate synergistically toward both the hydrogen and oxygen generation in alkali solution. Furthermore, with N‐NiMoO4/NiS2 grown carbon fiber cloth as the engineering electrode, the assembled N‐NiMoO4/NiS2–N‐NiMoO4/NiS2 system can deliver a current density of 10 mA cm?2 with the cell voltage of 1.60 V in the water‐splitting reaction. This current density is 3.39 times higher than that of the Pt–Ir set (2.95 mA cm?2). The excellent catalytic performance offered of N‐NiMoO4/NiS2 nanowires/nanosheets presents a great example to demonstrate the significance of interface engineering in the field of electrocatalysis.  相似文献   

18.
Integration of nanostructured electrocatalysts into a 3D ordered assembly is beneficial for boosting their catalytic performance across various energy conversion applications. In this work, a self‐templated carbonization strategy for synthesizing heterostructures of transition metal phosphide@nitrogen/phosphorus dual‐doped carbon quasiaerogels (TMP@NPCA) is presented using a rationally designed precursor of a metallogel with Zn/M (M = Co, Fe, and Ni) bimetallic clusters (BMOG) and nitrogen/phosphorus chelate ligands. During the self‐templated carbonization, the Zn ions among the BMOG boost a simultaneous catalytic carbonization and activation process of the resultant TMP@NPCA, whereas the M ions offer a versatile self‐phosphating preparation of TMP nanoparticles (e.g., CoP, FeP, and Ni2P) within the TMP@NPCA. As a proof of concept, the TMP@NPCA catalysts deliver an excellent bifunctional catalytic activity and outstanding stability toward the oxygen reduction reaction and hydrogen evolution reaction, offering competitive advantages to achieve supreme bifunctional catalysis performance over the state‐of‐the‐art TMP catalysts for renewable energy conversion systems.  相似文献   

19.
Engineering of controlled hybrid nanocomposites creates one of the most exciting applications in the fields of energy materials and environmental science. The rational design and in situ synthesis of hierarchical porous nanocomposite sheets of nitrogen‐doped graphene oxide (NGO) and nickel sulfide (Ni7S6) derived from a hybrid of a well‐known nickel‐based metal‐organic framework (NiMOF‐74) using thiourea as a sulfur source are reported here. The nanoporous NGO/MOF composite is prepared through a solvothermal process in which Ni(II) metal centers of the MOF structure are chelated with nitrogen and oxygen functional groups of NGO. NGO/Ni7S6 exhibits bifunctional activity, capable of catalyzing both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) with excellent stability in alkaline electrolytes, due to its high surface area, high pore volume, and tailored reaction interface enabling the availability of active nickel sites, mass transport, and gas release. Depending on the nitrogen doping level, the properties of graphene oxide can be tuned toward, e.g., enhanced stability of the composite compared to commonly used RuO2 under OER conditions. Hence, this work opens the door for the development of effective OER/HER electrocatalysts based on hierarchical porous graphene oxide composites with metal chalcogenides, which may replace expensive commercial catalysts such as RuO2 and IrO2.  相似文献   

20.
Oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) play significant role on the practical applications of water splitting for producing clean fuel. Although some low-cost metal oxides are active on catalyzing OER and HER, the instinct drawback of sluggish charges carriers transfer mobility decrease the reactions kinetic and hinder their application. To overcome the issue, Co V oxide is successfully built-up with a Co O V structure to eliminate energy barrier during carriers transfer by the spin-flip hopping process, which can be coated on various substrate to stimulate OER and HER. Moreover, the V “bridge” between Co O bonds stimulates the OER through more effective lattice oxygen oxidation mechanism, which can directly format O O bond in more effective pathway. The protocol could be spread on rational design of such OER electrocatalysts on various electrode to lower-cost water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号