首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 114 毫秒
1.
Characterization of powder-metallurgically manufactured (Bi x Sb1?x )2(Te y Se1?y )3 thermoelectric materials is presented. The manufacturing methods were spark plasma sintering (SPS) and hot isostatic pressing (HIP). x-Ray diffraction (XRD) and density measurements as well as transport characterization and scanning electron microscopy were performed on the materials. It is shown that both sintering techniques yield reasonable thermoelectric characteristics for p-type (x = 0.2, y = 1) as well as n-type (x = 0.95, y = 0.95) materials. Insight into the underlying reasons such as the scattering processes limiting the characteristics is gained by fitting experimental transport data using a theoretical model. The limitations and further optimization issues of our approach in thermoelectric material preparation are discussed.  相似文献   

2.
Transition-metal trichalcogenides MX3 (M = Ti, Zr, Nb, Ta; X = S, Se) are well-known inorganic quasi-one-dimensional conductors. Among them, we have investigated the thermoelectric properties of titanium trisulfide TiS3 microribbon. The electrical resistivity ρ, thermal conductivity κ, and thermoelectric power S were measured using 3ω method. The weight mean values were found to be ρ = 5 mω m and κ = 10 W K?1 m?1 along the one-dimensional direction (b-axis) of the TiS3 microribbon. Combined with the thermoelectric power S = ?530 μV K?1, the figure of merit was calculated as ZT = 0.0023. This efficiency is the same as that of randomly oriented bulk TiS3. We also estimated the anisotropy of σ and κ using the present results and those for randomly oriented bulk material. The obtained weak anisotropy for TiS3 is attributable to strong coupling between triangular columns consisting of TiS3 units. These experimental results are consistent with theoretical results obtained using density functional theory (DFT) calculations.  相似文献   

3.
Functionally graded thermoelectric materials (FGTMs) have been prepared by sedimentation of atoms under a strong gravitational field. Starting samples of Bi x Sb1?x alloys with different composition x were synthesized by melting of metals and subsequent annealing of quenched samples. The thermoelectric properties (Seebeck coefficient, electrical conductivity) of the starting materials were characterized over the temperature range from 300 K to 525 K. Strong gravity experiments were performed in a unique ultracentrifuge apparatus under acceleration of over 0.5 × 106 G at temperatures of 538 K and 623 K. Changes of the microstructure and chemical composition were analyzed using scanning electron microscopy with energy-dispersive x-ray spectroscopy analysis. The distribution of the Seebeck coefficient of the Bi-Sb alloys was characterized by scanning thermoelectric microprobe. As a result of sedimentation, large changes in chemical composition (x = 0.45 to 1) were obtained. It was found that the changes in chemical composition were correlated with alterations of the Seebeck coefficient. The obtained experimental data allowed the development of a semiempirical model for the selection of optimal processing parameters for preparation of Bi-Sb alloys with required thermoelectric properties.  相似文献   

4.
Compact polycrystalline samples of SrZn2Sb2 [space group $ P\overline{3} m1 $ , a = 4.503(1) Å, c = 7.721(1) Å] were prepared by spark plasma sintering. Thermoelectric performance, Hall effect, and magnetic properties were investigated in the temperature range from 2 K to 650 K. The thermoelectric figure of merit ZT was found to increase with temperature up to ZT = 0.15 at 650 K. At this temperature the material showed a high Seebeck coefficient of +230 μV K?1, low thermal conductivity of 1.3 W m?1 K?1, but rather low electrical conductivity of 54 S cm?1, together with a complex temperature behavior. SrZn2Sb2 is a diamagnetic p-type conductor with a carrier concentration of 5 × 1018 cm?3 at 300 K. The electronic structure was calculated within the density-functional theory (DFT), revealing a low density of states (DOS) of 0.43 states eV?1 cell?1 at the Fermi level.  相似文献   

5.
Recently, based on measurement results below 400 K, we suggested that chalcopyrite CuFeS2-based alloys hold promise as thermoelectric materials. In this study, we have investigated the phase stability of such compounds and measured their thermoelectric properties at temperatures above 400 K. Thermogravimetric data indicate that the samples synthesized by a spark plasma sintering method were stable up to 700 K, above which sulfur deficiency becomes prominent. The electrical resistivity of the electron-doped samples showed metallic behavior up to 700 K. The Seebeck coefficients show large negative values of about ?300 μV/K above 400 K. As a result, the power factor of Cu0.97Fe1.03S2 is ~1 mW/K2m in the temperature range of 400 K to 600 K.  相似文献   

6.
We report wet chemical synthesis of a hierarchical nanocomposite thermoelectric material, (Bi,Sb)2Te3 + 2 vol.% Sb2O3, which exhibits a very high ZT value of 1.5 at 333 K. The key to such a high ZT value is to design the interfacial density (ID) of the nanodispersion and the mean diameter of the matrix (d) in the nanocomposite. To this end, (Bi,Sb)2Te3 with Sb2O3 nanodispersion was developed using in situ precipitation during solvothermal treatment. Nanocomposite structure was observed in sintered specimens. By evaluation of thermoelectric properties, it was confirmed that phonon scattering on the surface of Sb2O3 dispersion and κ ph correspondingly decreased with ID. The formation of a well-controlled Sb2O3 dispersion (mean diameter of dispersion: D = 1.5 nm, ID = 0.06 nm?1) and fine grains (d = 38 nm) led to an extremely low lattice thermal conductivity of 0.28 W m?1 K?1, while reducing the electrical conductivity moderately according to the conventional mixture rule.  相似文献   

7.
V2VI3 compounds and solid solutions based on them are known to be the best low-temperature thermoelectric (TE) materials. The predicted possibility of enhancement of the TE figure of merit in two-dimensional (2D) structures has stimulated studies of the properties of these materials in the thin-film state. The goal of the present work is to study the dependences of the Seebeck coefficient S, electrical conductivity σ, Hall coefficient R H, charge carrier mobility μ H, and TE power factor P = S 2 σ of Bi2Te3 thin films on the composition of the initial bulk material used for preparing them. Thin films with thickness d = 200 nm to 250 nm were grown by thermal evaporation in vacuum of stoichiometric Bi2Te3 crystals (60.0 at.% Te) and of crystals with 62.8 at.% Te onto glass substrates at temperatures T S of 320 K to 500 K. It was established that the conductivity type of the initial material is reproduced in films fairly well. For both materials, an increase in T S leads to an increase in the thin-film structural perfection, better correspondence between the film composition and that of the initial material, and increase in S, R H, μ H, σ, and P. The room-temperature maximum values of P for the films grown from crystals with 60.0 at.% and 62.8 at.% Te are P = 7.5 × 10?4 W/K2 m and 35 × 10?4 W/K2 m, respectively. Thus, by using Bi2Te3 crystals with different stoichiometry as initial materials, one can control the conductivity type and TE parameters of the films, applying a simple and low-cost method of thermal evaporation from a single source.  相似文献   

8.
γ-Na x CoO2 single-phase powders have been synthesized by a poly(acrylic acid) (PAA) sol–gel (SG) method, and γ-Na x CoO2 bulk ceramic fabricated using spark plasma sintering. The effects of the PAA concentration on the sample phase composition and morphology were investigated. The thermoelectric properties of the γ-Na x CoO2 bulk ceramic were also studied. The results show that the PAA concentration did not significantly affect the crystalline phase of the product. However, agglomeration of γ-Na x CoO2 crystals was suppressed by the steric effect of PAA. The Na x CoO2 bulk ceramic obtained using the PAA SG method had higher crystallographic anisotropy, better chemical homogeneity, and higher density than the sample obtained by solid-state reaction (SSR), leading to improved thermoelectric performance. The PAA SG sample had power factor (in-plane PF = σS 2) of 0.61 mW m?1 K?2 and dimensionless figure of merit (ZT) along the in-plane direction of 0.19 at 900 K, higher than for the SSR sample (in-plane PF = 0.51 mW m?1 K?2, in-plane ZT = 0.17). These results demonstrate that a simple and feasible PAA SG method can be used for synthesis of Na x CoO2 ceramics with improved thermoelectric properties.  相似文献   

9.
Nanostructured thermoelectric (TE) materials, for example Sb2Te3, PbTe, and SiGe-based semiconductors, have excellent thermoelectric transport properties and are promising candidates for next-generation TE commercial application. However, it is a challenge to synthesize the corresponding pure nanocrystals with controlled size by low-temperature wet-chemical reaction. Herein, we report an alternative versatile solution-based method for synthesis of plate-like Sb2Te3 nanoparticles in a flask using SbCl3 and Te powders as raw materials, EDTA-Na2 as complexing agent, and NaBH4 as reducing agent in the solvent (distilled water). To investigate their thermoelectric transport properties, the obtained powders were cold compacted into cuboid prisms then annealed under a protective N2 atmosphere. The results showed that both the electrical conductivity (σ) and the power factor (S 2 σ) can be enhanced by improving the purity of the products and by increasing the annealing temperature. The highest power factor was 2.04 μW cm?1 K?2 at 140°C and electrical conductivity remained in the range 5–10 × 103 S m?1. This work provides a simple and economic approach to preparation of large quantities of nanostructured Sb2Te3 with excellent TE performance, making it a fascinating candidate for commercialization of cooling devices.  相似文献   

10.
The thermoelectric properties of the Ag-doped ceramics Y1?x Ag x BaCo4O7+δ (x = 0.0, 0.05, 0.1, 0.15, and 0.2) were investigated from 373 K to 973 K. The results show that the doping of Ag can reduce the electrical resistivity. The Seebeck coefficients of the samples decrease when the Ag doping amount is small, but increase when the Ag doping amount is large. The activation energy of the electrical conductivity was calculated using Arrhenius plots, and it was found that the activation energy descends with increase of the Ag doping amount. According to the power factors, the optimum Ag doping amount is x = 0.15, which results in a higher power factor of 81 μW m?1 K?2 at 973 K, 72.7% higher than for the sample without Ag doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号