首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 64 毫秒
1.
王宗清  段军  曾晓雁 《激光技术》2015,39(3):353-356
为了减小温度对半导体激光器输出光波长和功率稳定性的影响,设计了由恒流模块驱动半导体制冷器,通过改变恒流模块的电流来控制半导体制冷器的制冷量,利用分段积分的比例-积分-微分控制算法,选择最优控制参量,实现大功率半导体激光器的精密温控系统。系统包括高精度测温电路、控制核心DSP F28335、半导体制冷器控制电路、人机交互及通信模块。在5℃~26℃环境下对系统进行测试,实现50W大功率半导体激光器的恒温控制,温控范围为15℃~45℃,温控精度达到0.02℃。结果表明,该系统温控范围广,控制精度高,满足大功率半导体激光器的温控要求。  相似文献   

2.
用于半导体激光器的温控电路设计   总被引:4,自引:5,他引:4  
针对半导体激光器(LD)出光稳定的应用要求,设计了一种有效的温度控制电路.电路基于单片热电制冷控制芯片ADN8830,采用闭环负反馈结构,使用恒流源测温电路代替普通H桥式测温电路,解决了非线性误差问题,通过比例积分微分(PID)补偿电路产生控制信号,驱动热电制冷器(TEC),实现了对LD工作温度的高精度控制.通过测试,LD工作温度在1 min内达到设定温度,30 min内.在25℃的工作温度下稳定度达±0.2℃.结果表明:该电路能快速、有效地控制TEC工作,达到稳定LD工作温度的目的.  相似文献   

3.
4.
刘泽利 《激光杂志》2014,(12):82-84
本文针对气体检测中DFB激光器温度控制的需要,设计了一种高精度温控系统。采用热敏电阻检测激光器的温度,将其转换为电压信号后进行差分放大并通过高速AD将其转换为数字信号。FPGA读取数字信号并采用PID算法对系统进行控制参数计算。控制参数以PWM信号的形式输出,并由H桥转化为控制信号对TEC进行控制。经过实验测试,系统温度调节范围为10~50℃,温控精度高达±0.03℃。系统具有稳定速度快、温度精度高等优点,已成功应用于气体检测项目中。  相似文献   

5.
阐述了半导体热电制冷器(TEC)的工作原理,分析了线性驱动和脉冲宽度调制(PWM)驱动TEC的原理以及各自的特点,对Linear公司的热电制冷器控制芯片LTC1923作了介绍,讨论了基于LTC1923的半导体分布反馈式(DFB)激光器自动温度控制电路,并对实验和实际应用的结果进行了分析,给出了实测数据和波形。实验结果表明激光器中心波长变化范围为±5pm,对应管芯温度变化±0.05℃,说明温控电路可以有效地对激光器的工作温度进行控制。  相似文献   

6.
用于光通信系统的可调谐半导体激光器   总被引:1,自引:1,他引:0  
光通信的发展需要宽带可调谐的光源.文章概述了用于光通信系统中的可调谐半导体激光器的研究进展.  相似文献   

7.
高平东  张法全 《激光技术》2014,38(2):270-273
为了使半导体激光器辐射波长和发光强度的稳定性不受环境温度的影响,设计了一款高精度半导体激光器温控系统。采用AD620和LTC1864芯片设计了温度采集电路,用MAX1968和LTC1655设计了温度控制电路,而用TMS320F2812实现对整个系统的精确控制;提出了自适应模糊比例-积分-微分控制策略并完成了软件实现。在环境温度约15℃时,分别设定25℃和20℃进行试验,温度控制精度达±0.05℃。结果表明,该温控系统响应速度快、稳定性高。  相似文献   

8.
基于模糊控制原理,采用模糊控制与PID控制相结合的模糊控制方法,完成了一种针对半导体激光器温度控制的算法设计。该模糊PID控制算法,能够自适应调节PID的比例、积分和微分系数,从而使半导体制冷器的温度保持恒定。Simulink仿真结果表明,采用该模糊PID控制算法后系统的超调量减少40%,缩短了调节时间,控制效果优于常规PID控制系统。  相似文献   

9.
半导体激光器温度控制电路设计   总被引:2,自引:0,他引:2  
在对激光器的温度控制理论作了深入研究的基础上,为了使激光器工作时温度恒定,设计了一种新型的温度控制电路,电路中采用了ADN8831作为的核心器件,结合PWM控制方案,完成了包括输入级、补偿环节、输出级、滤波电路和保护及检测电路的硬件电路设计。经过实际连接激光器实验,温度控制精度可达0.01℃。电路具有体积小、效率高、可靠性高、驱动能力强等特点,可以为激光器提供恒定的温度控制。  相似文献   

10.
为了使光收发模块发射光波长稳定,突破现有半导体激光器温控系统大都采用模拟器件实现的常规设计,提出了一种基于数字滤波方式的控制方案,采用数字信号处理方式,以固件形式实现了半导体激光器温度控制。通过理论分析和实验验证,取得了采用该方案的光收发模块在应用温度范围内的发射波长变化数据。结果表明,该系统性能稳定,温度控制精度达0.053℃。  相似文献   

11.
设计了一种应用于准分子激光器的高精度温度控制系统,可对准分子激光器放电腔的温度进行实时采集、显示、控制,达到维持激光器腔体温度恒定的目的,从而改善激光器的工作性能如能量稳定性和使用寿命等。系统采用飞思卡尔单片机,以比例阀作为控温执行器件,并且设计了软硬件和优化的控制算法。实验结果表明:在三种不同PID控制方式下,系统控制精度皆能达到±0.2℃;在改进的智能PID控制下,系统超调变小、调节时间减少;在100Hz和500Hz不同重频条件下,系统采用智能PID控制时,运行稳定。因此,本系统可为激光器的运行提供良好的温度控制环境。  相似文献   

12.
光电应用领域对温度控制的精确性和稳定性有很高的要求。本文基于C8051F021单片机,改进PID控制算法,设计了大功率半导体激光器温度控制系统,解决了传统大功率半导体激光器温控系统控温时间长、精度低、稳定性差等问题。实验结果表明:其控温精度可达±0.1 ℃。  相似文献   

13.
为了解决电流和温度变化对小功率半导体激光二极管工作性能的影响,提出了一种激光稳定控制方法。通过设计恒流电路稳定激光管工作电流,双层温度控制电路稳定激光管工作温度,使半导体激光二极菅工作在稳定电流、温度的环境下。结果表明:激光管工作稳定,工作电流波动范围在μA量级,工作温度波动范围在10^-2℃量级,达到了设计的要求。  相似文献   

14.
用于全内腔微片激光器稳频的温度控制系统   总被引:2,自引:2,他引:2       下载免费PDF全文
温度控制是实现全内腔半导体泵浦Nd:YAG微片激光器稳频的行之有效的手段之一。研究了如何为Nd:YAG微片激光器的稳频提供有效的温控方式。估算出所需要的控温精度波动范围在0.09 ℃以内。依据这一设计目标,介绍了各重要环节的设计过程。通过频域分析法,对温控系统的特性进行分析与调整。通过理论计算将系统改造成了二阶系统最优模型并用实验验证了理论分析。研制了一套用于全内腔半导体泵浦Nd:YAG微片激光器的温控系统,并在两种条件下对系统进行了测试。在室温26 ℃左右的条件下,可以给微片提供18~38 ℃之间的任意温度环境,温度波动范围在0.05 ℃以内;当环境温度在18 ~27 ℃之间任意改变时,系统能将晶片温度稳定在24 ℃,温度波动范围在0.05 ℃以内。  相似文献   

15.
医用半导体激光器的温度控制   总被引:2,自引:0,他引:2       下载免费PDF全文
韩晓俊  李正佳 《激光技术》1998,22(4):250-253
主要叙述了用作激光针灸的半导体激光器温度控制的原理及初步设计,经PID模拟反馈回路调节,能在宽范围维持±0.5℃的温度控制精度,阈值电流有所降低,辐射波长稳定,输出功率最大值明显提高,并且线性较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号