首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new four-switch full-bridge dc-dc converter topology is especially well-suited for power converters operating from high input voltage: it imposes only half of the input voltage across each of the four switches. The two legs of a full-bridge converter are connected in series with each other, across the dc input source, instead of the usual topology in which each leg is connected across the dc source. The topology reduces turn-off switching losses by providing capacitive snubbing of the turn-off voltage transient, and eliminates capacitor-discharge turn-on losses by providing zero-voltage turn-on. (Switching losses are especially important in converters operating at high input voltage because turn-on losses are proportional to the square of the input voltage, and turn-off losses are proportional to the input voltage). The topology is suitable for resonant and nonresonant converters. It adds one bypass capacitor and one commutating inductor to the minimum-topology full-bridge converter (that inductor is already present in many present-day converters, to provide zero-voltage turn-on, or is associated with one or two capacitors to provide resonant operation), and contains a dc-blocking capacitor in series with the output transformer, primary winding, and some nonresonant converters (that capacitor is already present in resonant power converters). The paper gives a theoretical analysis, and experimental data on a 1.5-kW example that was built and tested: 600-Vdc input, 60-Vdc output at up to 25A, and 50-kHz switching frequency. The measured performance agreed well with the theoretical predictions. The measured efficiency was 93.6% at full load, and was a maximum of 95.15% at 44.8% load.  相似文献   

2.
This paper proposes a zero-voltage and zero-current-switching pulsewidth modulation hybrid full-bridge three-level (ZVZCS PWM H-FB TL) converter, which has a TL leg and a two-level leg. The voltage stress of the switches of the TL leg is half of the input voltage, and the switches can realize ZVS, so MOSFETs can be adopted; the voltage stress of the switches of the two-level leg is the input voltage, and the switches can realize ZCS, so IGBT can be adopted. The secondary rectified voltage is a TL waveform having lower high-frequency content compared with that of the traditional FB converters, which leads to the reduction of the output filter inductance. The input current of the converter has quite little ripple, so the input filter can also be significantly reduced. The operation principle of the proposed converter is analyzed and verified by the experimental results. Several ZVZCS PWM H-FB TL converters are also proposed in this paper.  相似文献   

3.
Zero-voltage-switching PWM hybrid full-bridge three-level converter   总被引:4,自引:0,他引:4  
This paper proposes a zero-voltage-switching (ZVS) pulse-width modulation (PWM) hybrid full-bridge three-level converter, which has a three-level leg and a two-level leg. The switches of the three-level leg sustain only the half of the input voltage, and they can realize ZVS in a wide load range. The switches of the two-level leg sustain the input voltage, and they can realize ZVS with the use of the resonant inductance. The secondary rectified voltage is a three-level waveform having lower high-frequency content compared with that of the traditional full-bridge converters, which can reduce the output filter, and as a result, the dynamic response of the converter is improved. The voltage stress of the rectifier diode is reduced also. The input current of the converter has quite little ripple, so the input filter can also be significantly reduced. The operation principle of the proposed converter is analyzed and verified by the experimental results.  相似文献   

4.
This paper proposes a novel hybrid full-bridge (H-FB) three-level (TL) LLC resonant converter. It integrates the advantages of the H-FB TL converter and the LLC resonant converter. It can operate under both three-level mode and two-level mode, so it is very suitable for wide-input-voltage-range applications, such as fuel-cell power systems. Compared with the traditional full-bridge converter, the input current ripple and output filter can be reduced. In addition, all the switches can realize zero-voltage switching from nearly zero to full load, and the switches of the TL leg sustain only half of the input voltage. Moreover, the rectifier diodes can achieve zero-current switching, and the voltage stress across them can be minimized to the output voltage. A prototype of 200-400-V input and 360-V/4-A output is built in our laboratory to verify the operation principle of the proposed converter  相似文献   

5.
A new soft switching converter is presented for medium power applications. Two full-bridge converters are connected in series at high voltage side in order to limit the voltage stress of power switches at Vin/2. Therefore, power metal–oxide–semiconductor field-effect transistors (MOSFETs) with 600 V voltage rating can be adopted for 1200 V input voltage applications. In order to balance two input split capacitor voltages in every switching cycle, two flying capacitors are connected on the AC side of two full-bridge converters. Phase-shift pulse-width modulation (PS-PWM) is adopted to regulate the output voltage. Based on the resonant behaviour by the output capacitance of MOSFETs and the resonant inductance, active MOSFETs can be turned on under zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. Two full-bridge converters are used in the proposed circuit to share load current and reduce the current stress of passive and active components. The circuit analysis and design example of the prototype circuit are provided in detail and the performance of the proposed converter is verified by the experiments.  相似文献   

6.
A hybrid full-bridge (H-FB) three-level (TL) converter can realize zero-voltage-switching for switches with the use of resonant inductance (including the leakage inductance of the transformer) and intrinsic capacitors of the switches. As it can operate in three-level and two-level (2L) modes, the secondary rectified voltage is always close to the output voltage over the input-voltage range; thus, the output filter requirement is significantly less. Meanwhile, the voltage stress of the rectifier diodes can also be reduced. Therefore, the H-FB TL converter is very attractive for wide input-voltage-range applications. However, there is a serious voltage oscillation across the rectifier diodes caused by reverse recovery like the Buck-derived converters. In this paper, two clamping diodes are introduced to the H-FB TL converter to eliminate the voltage oscillation across the rectifier diodes. The arrangement of the positions of the resonant inductance and the transformer is discussed. The operation principle of the proposed converter is analyzed in details. A 1.2-kW prototype was built and tested in the laboratory to verify the operation of the proposed converter.  相似文献   

7.
A new topology for active power filters (APF) using an 81-level converter is analyzed. Each phase of the converter is composed of four three-state converters, all of them connected to the same capacitor dc link voltage and their output connected in series through output transformers. The main advantages of this kind of converter are the negligible harmonic distortion obtained and the very low switching frequency operation. The single-phase equivalent circuit is analyzed and their governing equations derived. The dc link voltage control, based on manipulating the converter's voltage phase, is analyzed together with the circuit's characteristics that determine the capability to draw or deliver active and reactive current. Simulation results for this application are compared with conventional pulsewidth-modulated (PWM) converters, showing that this filter can compensate load current harmonics, keeping better-quality sinusoidal currents from the source. The simulated configuration uses a 1-F ultracapacitor in the dc link, making it possible to store energy and deliver it during short voltage dips. This is achieved by applying a modulation control to maintain a stable ac voltage during dc voltage drops. A prototype of the filter was implemented and tested, and the obtained current waveforms showed to be as good as expected.  相似文献   

8.
This paper deals with low-cost high input voltage auxiliary power supplies. The objective of the paper is to give an overview of the existing solutions, and then present a new, efficient, and cost-effective solution. The proposed solution is based on input-series- and output-parallel (ISOP)-connected converters topology and simple decoupled master/slave control strategy. The main output voltage is controlled by the master converter, while the input voltages and output currents are controlled and balanced by the slave converter. The ISOP topology has two important advantages, namely the use of two series-connected rated for lower voltage converters gives a significant reduction of the switch-mode power supply overall cost and size, and lossfree balancing of the voltages of the input serially connected filter capacitors. The proposed solution is theoretically analyzed and experimentally verified on a laboratory setup. The experimental results are presented and discussed.   相似文献   

9.
Unity power factor zero-voltage-switched (ZVS) AC-to-DC power converters with an active filter are proposed. The line voltage is supplied to AC-to-DC power converters through a rectifier circuit with an input filter, to reduce high-frequency ripple components. The line current is almost synchronized to the line voltage, due to the low impedance of the input filter. Forward ZVS multiresonant power converters (ZVS-MRCs) are utilized for high-frequency operation and lossless switching. An active filter is introduced to minimize the twice line-frequency ripple component of the output voltage without large-size passive filters. Experimental results show that the proposed scheme gives good steady-state performances of the AC-to-DC power converters  相似文献   

10.
New two-inductor boost converter with auxiliary transformer   总被引:5,自引:0,他引:5  
A new, two-inductor, two-switch boost converter topology and its variations suitable for applications with a large difference between the input and output voltage are described. The output voltage regulation of the proposed converters is achieved in a wide load and input-voltage range with constant-frequency control by employing an auxiliary transformer that couples the current paths of the two boost inductors.  相似文献   

11.
A novel circuit-topology family of the current-mode AC/AC converter with high-frequency AC link, based on a Flyback converter, is proposed. These circuit topologies, which can transfer one unregulated sinusoidal voltage with high total harmonic distortion (THD) into another regulated constant-frequency sinusoidal voltage with low THD, are composed of input cycloconverter, high-frequency storage transformer, and output cycloconverter. The circuit-topology family includes single four-quadrant power switch mode, push-pull mode, half-bridge mode, and full-bridge mode circuits. The single four-quadrant power switch mode and push-pull mode converters are suitable for low input voltage fields, but the half-bridge mode and full-bridge mode converters are suitable for high input voltage fields. The operational mode, steady principle, and transient voltage feedback control strategy of the kind of converter are investigated. The output characteristic curve, its relation to internal resistance, and the design criteria for the key circuit parameters are given. The theoretical analysis and the test result of the 500 VA 220 V 15% 50 HzAC/220 V 50 HzAC prototype have shown that the converters have advantages such as high-frequency galvanic isolation, simple topology, two-stage power conversion [low frequency alternating current (LFAC)/high frequency alternating current (HFAC)/LFAC], bidirectional power flow, high efficiency, high power density, low THD of the output voltage, strong adaptability to various loads, higher line power factor, low audio noise, etc.  相似文献   

12.
Two alternatives for the implementation of an isolated DC-DC converter operating with a high output voltage and supplied by an unregulated low input voltage are presented in this paper. The proposed topologies are especially qualified for the implementation of travelling wave tube amplifiers (TWTA) utilized in telecommunication satellite applications due to their low mass and volume and their high-efficiency. The converters studied follow different principles and the main operational aspects of each topology are analyzed. A two-stage structure composed by a regulator connected in series with a ZVS/ZCS isolated DC-DC converter is the first topology proposed. The second topology studied is an isolated single-stage converter that continues being highly efficient even with a large input voltage variation. The experimental results obtained from two prototypes, implemented following the design procedures developed, are presented, verifying experimentally the characteristics and the analysis of the proposed structures. The prototypes are developed for an application requiring an output power of 150 W, a total output voltage of 3.2 kV and an input voltage varying from 26 V to 44 V. The minimum efficiency obtained for both converters operating at the nominal output power, is equal to 93.4% for the two-stage structure and equal to 94.1% for the single-stage converter.  相似文献   

13.
A voltage-balanced phase-shifted three-level DC/DC converter is proposed. Its switch voltage stress is ensured to be only one-half of the input voltage and its four-step operation can reduce considerably the output inductor current ripple. Moreover, it features a small filter, no voltage unbalance problem, static/dynamic sharing of the switch voltage, high-efficiency, and high-power density. It is very suitable for high power converters operating from a high-input voltage.  相似文献   

14.
A novel single-stage full-bridge series-resonant buck-boost inverter (FB-SRBBI) is proposed in this paper. The proposed inverter only includes a full-bridge topology and a LC resonant tank without auxiliary switches. The output voltage of the proposed inverter can be larger or lower than the dc input voltage, depending on the instantaneous duty-cycle. This property is not found in the classical voltage source inverter, which produces an ac output instantaneous voltage always lower than the dc input voltage. The proposed inverter circuit topology provides the main switch for turn-on at ZCS by a resonant tank. The nonlinear control strategy is designed against the input dc perturbation and achieves well dynamic regulation. An average approach is employed to analyze the system. A design example of 500 W dc/ac inverter is examined to assess the inverter performance and it provides high power efficiency above 90% under the rated power.  相似文献   

15.
刘晓悦 《电子器件》2021,44(1):46-51
本文介绍了一种新的高功率双向隔离式DC/DC变换器。DC/DC转换器使用基于氮化镓(GaN)的功率开关器件。本文对10 kW GaN大功率DC/DC变换器的拓扑结构进行了优化,参数化和分析,并通过仿真和验证了其有效性。它由两个单相全桥电路、两个输入输出电感和一个高频变压器组成。高频变压器在实现两个全桥变换器之间的电流隔离方面起着至关重要的作用。使用MATLAB仿真软件对10 kW的变换器进行了建模。MATLAB仿真结果验证了变换器的性能适合于高功率应用并能实现轻负载条件下的零电压开通(ZVS)和零电流关断(ZCS)。然后,设计了一个7 kW的实验原型,以验证所设计拓扑的有效性。  相似文献   

16.
多电平电路在高压大功率领域的拓展受到其复杂电路拓扑的制约,因此近年来不断有新型多电平电路结构被提出。本文在传统多电平逆变器拓扑结构的基础上,提出了一种新型单相七电平电压源逆变器拓扑。新型电路拓扑是在传统的单相全桥五电平箝位二极管电路基础上,增加了两个开关器件,利用10个开关器件以及4个箝位二极管产生了7种不同的电平输出。详细分析了该逆变器的拓扑结构,给出了PWM控制策略。最后通过仿真实验验证了这种拓扑的可行性。该逆变器对传统箝位二极管逆变器在结构上做出了优化。  相似文献   

17.
This paper presents an efficient multilevel-synthesis scheme and its application to a 27-level inverter. In the proposed multilevel scheme, this can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each transformer terminal voltage. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of transformers rather than the accumulation of capacitor voltage sources. A 27-level inverter consists of three full-bridge modules and their corresponding transformers. Quasi-sinusoidal voltage waves can be generated from a suitable selection of the turns ratio of the transformer. The validity of the proposed system is verified by computer-aided simulation and experimental results using a 500-W prototype, which can generate a 110-V ac output voltage from a 12-V dc input.  相似文献   

18.
This paper introduces a new active element combining the useful features of differential voltage, dual-X and first generation current conveyors. The new proposed active element is further utilized to introduce a new generalized filter topology employing grounded components only. The proposed single active element-based topology benefits from first-order and second-order filter realization by appropriate impedance specialization. The circuit topology with single current input provides two output currents and voltages in each case. A thorough study of proposed active element along with extensive simulations is carried out to validate the filter topology. A detailed non-ideal study is also given. To further support the usefulness of filter topology, higher-order filters are also realized. The new active element and the new filter structure provide advancement to the existing knowledge; with the scope of active element being further exploited for analog signal processing applications in general. The proposed differential voltage dual-X first generation current conveyor (DV-DXCCI) and its filtering applications are simulated using TSMC 0.25  \(\upmu \) m technology.  相似文献   

19.
Four new topologies of active input current shapers (AICSs) for converters with symmetrically driven transformers (such as half-bridge, full-bridge and push-pull) have been proposed. This paper analyzes the extension of the use of these new AICSs topologies to converters with asymmetrically driven transformers. Using some of these topologies, the size of AICS inductors can be reduced and even integrated in a single magnetic core. As in the case of other converters with AICS circuit, the new topologies allow line current harmonics to be reduced and thereby to comply with the IEC 1000-3-2 specifications, whilst maintaining all the features of standard DC-to-DC converters (e.g., fast transient response). Finally, the proposed topologies have been experimentally tested  相似文献   

20.
Single-phase power converters are widely used in power applications as photovoltaics and fuel-cell power conditioners. In addition, multilevel converters are a well-known solution in order to achieve high-quality output waveforms in power systems. In this paper, a time-domain duty-cycle computation technique for single-phase multilevel converters named 1DM is presented. The proposed technique is based on geometrical calculations with outstanding simplicity and generality. The proposed modulation technique can be easily applied to any multilevel converter topology carrying out the necessary calculations. The most common multilevel converter topologies have been studied in this paper as examples to introduce the proposed modulation strategy. Any other multilevel converter topology could be studied, and the corresponding 1DM could be easily developed. In addition, the well-known optimized voltage balance strategy for voltage capacitor control using the redundant switching states of the system is applied working with the proposed 1DM method, showing that both techniques are compatible. Experimental and simulation results for several single-phase multilevel converters are shown to validate the proposed modulation technique.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号