首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
牛利刚 《电子与封装》2009,9(12):30-33,40
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力,热应力是导致微电子封装器件失效的主要原因之一。文章采用MSC.Marc有限元软件,分析了QFN器件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验设计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处;主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处,其值分别为21.42MPa和-28.47MPa;由析因实验设计可知粘结剂厚度对QFN热应力的影响最大。  相似文献   

2.
在微电子封装器件的生产或使用过程中,由于封装材料热膨胀系数不匹配,不同材料的交界处会产生热应力,热应力是导致微电子封装器件失效的主要原因之一。本文采用MSC.Marc有限元软件,分析了QFNN件在回流焊过程中的热应力、翘曲变形、主应力及剪应力,并由析因实验哼殳计得到影响热应力的关键因素。研究表明:在回流焊过程中,QFN器件的最大热应力出现在芯片与粘结剂接触面的边角处;主应力和剪切应力的最大值也出现在芯片与粘结剂连接的角点处,其值分别为21.42MPa和-28.47MPa;由析因实验设计可知粘结剂厚度对QFN热应力的影响最大。  相似文献   

3.
使用有限元软件MSC.Marc分析了芯片粘结剂的形态、厚度和宽度对典型微电子封装QFN(四方扁平无引脚封装)器件热应力的影响。结果表明:在有限元网格密度相同的条件下,粘结剂形态的不同会对QFN器件的热应力产生较大影响,粘结剂无溢出形态的最大热应力为85.87MPa,而粘结剂有溢出形态的最大热应力为77.84MPa,并且最大热应力出现的位置也不同;粘结剂的厚度和宽度对热应力的影响不明显;由于粘结剂形态的不同界面热应力的分布会有较大差别。  相似文献   

4.
应用有限元方法分析了QFN形式的SiP封装器件在回流焊中的热应力与湿热合成应力。结果表明,在回流焊过程中,由于其结构特点与湿气的扩散不均引起湿热应力变化梯度加大,在其材料交界处应力集中现象明显。最大湿热应力是单纯考虑热应力的情况1.66倍左右。通过比较得知湿热环境对这种SiP器件的影响比一般的封装器件要大,更可能导致器件失效。  相似文献   

5.
热应力影响下SCSP器件的界面分层   总被引:1,自引:1,他引:0  
通过有限元方法研究了堆叠芯片尺寸封装(SCSP)器件在回流焊工艺过程中的热应力分布,采用修正J积分方法计算其热应力集中处应变能释放率。结果表明:堆叠封装器件中最大热应力出现在Die3芯片悬置端。J积分最大值出现在位于Die3芯片的上沿与芯片粘结剂结合部,达到1.35×10–2J/mm2,表明该位置的裂纹处于不稳定状态;在Die3芯片下缘的节点18,19和顶层节点27三个连接处的J积分值为负值,说明该三处裂纹相对稳定,而不会开裂处于挤压状态。  相似文献   

6.
采用湿度敏感度评价试验及湿-热仿真方法,分析了温湿度对于QFN封装分层失效的影响.通过C-SAM和SEM等观察发现,QFN存在多种分层形式,分层大多发生在封装内部材料的界面上,包括封装塑封材料和芯片之间的界面、塑封材料和框架之间的界面等.此外,在封装断面研磨的SEM图像上发现芯片粘结剂内部有空洞出现.利用有限元数值模拟的方法,对QFN封装的内部湿气扩散、回流过程中的热应力分布等进行了模拟,分析QFN分层失效的形成原因.结果表明,由于塑封器件材料、芯片、框架间CTE失配,器件在高温状态湿气扩散形成高气压条件下易产生分层.最后提出了改善QFN分层失效的措施.  相似文献   

7.
界面开裂是塑封IC器件的主要失效模式之一。电子封装用高聚物具有的多孔特性致使封装材料易于吸潮。在无铅回流焊工艺中,整个器件处于相对较高的温度下,致使高聚物吸收的潮湿会膨胀并在材料内部空洞产生很高的蒸汽压力。界面开裂在热机械、湿机械和蒸汽压力的耦合作用下极易发生。本文的主要目的就是研究无铅回流焊工艺中,温度、潮湿和蒸汽压力耦合作用对QFN器件开裂失效的影响。文章对塑料封装QFN器件从168小时的JEDECLevell标准(85℃/85%RH)下预置吸潮到后面的的无铅回流焊的整个过程进行了有限元仿真,并且对温度、湿度和蒸汽压力耦合作用下裂纹的裂尖能量释放率也通过J积分进行了计算。论文的研究结果表明QFN器件吸潮后封装体界面的潮湿成为界面开裂扩展的主要潜在因素,EMC材料、芯片和粘合剂的交点处应力最大,在该处预置裂纹后分析表明回流峰值温度时刻裂纹最易扩展且随裂纹长度增加扩展的可能性在提高。  相似文献   

8.
利用动态机械分析仪测定环氧模塑封(EMC)材料随温度变化的杨氏模量;使用热机械分析仪测定EMC随温度变化的尺寸变化量,并拟合得到热膨胀系数。在实验数据的基础上,变动EMC的橡胶态杨氏模量、玻璃态杨氏模量、玻璃转化温度以及热膨胀系数,并使用有限元软件MSC Marc分别模拟其热应力,以此来分析材料特性参数对热应力的影响。结果表明:QFN器件的最大热应力出现在芯片、粘结剂和EMC的连接处;减小橡胶态或玻璃态的杨氏模量可以有效地减小热应力;增大玻璃转化温度或热膨胀系数,QFN器件的热应力都会有所增加。  相似文献   

9.
采用通用有限元软件MSC.Marc,模拟分析了一种典型的多层超薄芯片叠层封装器件在经历回流焊载荷后的热应力及翘曲分布情况,研究了部分零件厚度变化对器件中叠层超薄芯片翘曲、热应力的影响。结果表明:在整个封装体中,热应力最大值(116.2 MPa)出现在最底层无源超薄芯片上,结构翘曲最大值(0.028 26 mm)发生于模塑封上部边角处。适当增大模塑封或底层无源芯片的厚度或减小底充胶的厚度可以减小叠层超薄芯片组的翘曲值;适当增大底层无源超薄芯片的厚度(例如0.01 mm),可以明显减小其本身的应力值10 MPa以上。  相似文献   

10.
由吸潮引起的微电子塑封器件失效已经越来越多地引起人们的关注.选用QFN器件作为研究对象,首先进行QFN器件在高温高湿环境下吸潮17 h、50 h、96 h试验;然后利用有限元软件分析和模拟潮湿在QFN器件中的扩散行为,并建立湿气预处理阶段应力计算模型;最后,通过试验与仿真相结合,分析潮湿对封装可靠性的影响.研究表明:微电子塑封器件的潮湿扩散速度与位置有着重要的关系;在高温高湿环境下,微电子器件吸潮产生的湿热应力在模塑封装材料(EMC)、硅芯片(DIE)和芯下材料(DA)的交界处最大;QFN器件在高温高湿环境下吸潮产生的裂纹主要出现在硅芯片与DA材料交界面的边界.  相似文献   

11.
概述了板材激光热应力成形技术的发展现状,分析了板材激光热应力成形的主要影响因素,综述了激光束参数、材料的性能及工件几何尺寸对激光热应力弯曲成形的影响,概括了激光热应力成形工艺的一些规律.为了能使板材激光热应力成形技术应用于生产,在总结前人研究成果的基础上,指出了板材激光热应力成形工艺存在的关键问题,并提出了目前板材热应力成形技术应用于生产所需要研究的内容.  相似文献   

12.
The interfacial stresses and chip cracking stress produced because of thermal and mechanical mismatch in layered electronic assembly are one of main reasons for the failure of electronic packages. The analytical model considering the nonlocal deformation of assembly was developed and applied to predict the interfacial stresses produced due to temperature variation for the short and long anisotropic conductive adhesive film (ACF) bonding assembly. The conditions of zero shear stress at the free ends and self-equilibrated peeling stresses were satisfied. Simultaneously the interfacial stresses of ACF assembly were also predicted by the corrected Suhir’s model, Wang’s model, Ghorbani’s model, local model and finite element model (FEM), which were compared with the results by the present model. In addition, the analytical expression of chip cracking stress was also obtained for layered electronic assembly. The approach is mathematically straightforward and can be extended to include the inelastic creep behavior.  相似文献   

13.
以车用镀锌钢和6016铝合金为研究对象,利用Ansys Workbench14.5仿真平台对焊接过程进行热固耦合数值求解,进而得到给定工艺参数条件下的温度场和应力场分布。热电偶同步测温实验可以保证温度场计算的准确性,通过热应力耦合分析可以得到应力场。应力场分布表明,应力主要集中在焊缝区域,实验结果恰好证实了这一点。观察焊缝区域的微观组织发现,该区域出现许多细小的裂纹,说明了热应力集中是出现微细裂纹的主要原因。文章根据温度场和应力场的分布对工艺参数进行分析,以为实际的工程应用提供参考。  相似文献   

14.
张军  田丰  钱敏  齐亚州 《压电与声光》2015,37(6):995-998
压电石英三向力传感器受热影响会导致输出信号产生偏差。基于温度均匀分布假设分析了压电传感器预紧结构在温度影响下的热变形规律,得出施加在压电石英上的热应力是传感器输出信号偏差的主要原因的结论。利用有限元软件对预紧结构加热过程中压电石英所受载荷变化过程进行分析,结果表明,随着热量的流入,压电石英在预紧力施加的方向上的应力变化为-3 315kPa。最后,基于信号偏差的分析结论改进传感器的预紧结构,并设计对比实验进行验证。在240s的加热过程中,改进后测力仪的预紧方向输出信号变化不大于4mV,能够抑制由温度变化引起的输出信号偏差,提高测试准确性。  相似文献   

15.
张军  田丰  钱敏  齐亚州 《压电与声光》2016,38(6):995-998
压电石英三向力传感器受热影响会导致输出信号产生偏差。基于温度均匀分布假设分析了压电传感器预紧结构在温度影响下的热变形规律,得出施加在压电石英上的热应力是传感器输出信号偏差的主要原因的结论。利用有限元软件对预紧结构加热过程中压电石英所受载荷变化过程进行分析,结果表明,随着热量的流入,压电石英在预紧力施加的方向上的应力变化为-3 315 kPa。最后,基于信号偏差的分析结论改进传感器的预紧结构,并设计对比实验进行验证。在240 s的加热过程中,改进后测力仪的预紧方向输出信号变化不大于4 mV,能够抑制由温度变化引起的输出信号偏差,提高测试准确性。  相似文献   

16.
对四层叠层CSP(SCSP)芯片封装器件,采用正交试验设计与有限元分析相结合的方法研究了芯片和粘结剂——8个封装组件的厚度变化在热循环测试中对芯片上最大热应力的影响.利用极差分析找出主要影响因子并对封装结构进行优化。根据有限元模拟所得结果.确定了一组优选封装结构,其Von Mises应力值明显比其它组低,提高封装器件的可靠性。  相似文献   

17.
江宏  林宇 《红外技术》2021,43(3):292-298
高速红外制导战术导弹飞行时,气动热(qw)剧烈,qw作用于导弹红外整流罩上,产生的热应力σ是导致整流罩热炸裂的主要因素。针对此问题,在导弹整流罩早期研制阶段,对于整流罩选材和能否进行下一步约束状态研究模拟整流罩固结导弹金属壳体实际工作状态,提出一种简单快捷的判别方法,红外整流罩纯热应力σ纯热分析。将自由状态整流罩受到温度梯度▽T引起的σ纯热从叠加位移约束WΓ引起更大的σ中剥离出来,抛开WΓ的影响,单独分析较小的σ纯热,进一步抓住引起整流罩热炸裂的主导因素。结合双色透波需求,以硫化锌ZnS红外整流罩为例,进行σ纯热仿真分析,ZnS材料强度极限σmax大于σ纯热,判定整流罩可以进入约束状态研究。经约束WΓ的σ试验验证,整流罩未炸裂,佐证此方法为整流罩选材提供一种快捷判断。  相似文献   

18.
为了管控紫外光固化工艺过程掩膜版的裂纹,基于ANSYS对受石英棒吸附的液晶玻璃基板的结构应力及升降温过程的热应力进行仿真分析,讨论了不同材料和不同厚度玻璃基板的结构应力及热应力变化。结构应力分析结果表明,基板挠度、等效应力和弯曲应力最大值均出现在中部;基板厚度增加时,最大应力值显著减小。热应力分析结果表明,当玻璃基板存在温度梯度时,升温较大的区域,玻璃基板挠度更大;随着温度先增大后减小,玻璃基板挠度、等效应力与弯曲应力均先增大后减小,且升降温过程中基板应力变化显著,等效应力变化最大,弯曲压应力变化较小,弯曲拉应力变化最小。玻璃基板等效应力和弯曲拉应力最大值分别达到44.8 MPa和5.79 MPa。优化设备降温系统,降低玻璃基板各区域的温度梯度与基板升温值等可有效防止玻璃破裂的发生。  相似文献   

19.
黄华茂  黄德修  刘文 《半导体学报》2007,28(9):1459-1464
结合弹性多层板热应力理论和应力集中效应给出了Si基SiO2波导芯层热应力的解析解,推导了芯层应力差的解析表达式.说明对于传统阵列波导光栅,芯层应力差来源于初始翘曲和波导各层热膨胀系数差;系统分析了波导各层材料对芯层应力差的影响,指出调节衬底的热膨胀系数、上包层的热膨胀系数、衬底的厚度和下包层的厚度都可以消除芯层应力差,但改变衬底和上包层热膨胀系数是调节芯层应力差的主要手段;讨论了几种常见金属应力板对芯层应力差的影响.结果表明,在阵列波导底部高温粘贴适当厚度的金属板可消除芯层应力差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号