首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A donor–acceptor (D–A) semiconducting copolymer, PDPP‐TVT‐29, comprising a diketopyrrolopyrrole (DPP) derivative with long, linear, space‐separated alkyl side‐chains and thiophene vinylene thiophene (TVT) for organic field‐effect transistors (OFETs) can form highly π‐conjugated structures with an edge‐on molecular orientation in an as‐spun film. In particular, the layer‐like conjugated film morphologies can be developed via short‐term thermal annealing above 150 °C for 10 min. The strong intermolecular interaction, originating from the fused DPP and D–A interaction, leads to the spontaneous self‐assembly of polymer chains within close proximity (with π‐overlap distance of 3.55 Å) and forms unexpectedly long‐range π‐conjugation, which is favorable for both intra‐ and intermolecular charge transport. Unlike intergranular nanorods in the as‐spun film, well‐conjugated layers in the 200 °C‐annealed film can yield more efficient charge‐transport pathways. The granular morphology of the as‐spun PDPP‐TVT‐29 film produces a field‐effect mobility (μ FET) of 1.39 cm2 V?1 s?1 in an OFET based on a polymer‐treated SiO2 dielectric, while the 27‐Å‐step layered morphology in the 200 °C‐annealed films shows high μ FET values of up to 3.7 cm2 V?1 s?1.  相似文献   

2.
The properties of metal oxides with high dielectric constant (k) are being extensively studied for use as gate dielectric alternatives to silicon dioxide (SiO2). Despite their attractive properties, these high‐k dielectrics are usually manufactured using costly vacuum‐based techniques. In that respect, recent research has been focused on the development of alternative deposition methods based on solution‐processable metal oxides. Here, the application of the spray pyrolysis (SP) technique for processing high‐quality hafnium oxide (HfO2) gate dielectrics and their implementation in thin film transistors employing spray‐coated zinc oxide (ZnO) semiconducting channels are reported. The films are studied by means of admittance spectroscopy, atomic force microscopy, X‐ray diffraction, UV–Visible absorption spectroscopy, FTIR, spectroscopic ellipsometry, and field‐effect measurements. Analyses reveal polycrystalline HfO2 layers of monoclinic structure that exhibit wide band gap (≈5.7 eV), low roughness (≈0.8 nm), high dielectric constant (k ≈ 18.8), and high breakdown voltage (≈2.7 MV/cm). Thin film transistors based on HfO2/ZnO stacks exhibit excellent electron transport characteristics with low operating voltages (≈6 V), high on/off current modulation ratio (~107) and electron mobility in excess of 40 cm2 V?1 s?1.  相似文献   

3.
Here, a simple, nontoxic, and inexpensive “water‐inducement” technique for the fabrication of oxide thin films at low annealing temperatures is reported. For water‐induced (WI) precursor solution, the solvent is composed of water without additional organic additives and catalysts. The thermogravimetric analysis indicates that the annealing temperature can be lowered by prolonging the annealing time. A systematic study is carried out to reveal the annealing condition dependence on the performance of the thin‐film transistors (TFTs). The WI indium‐zinc oxide (IZO) TFT integrated on SiO2 dielectric, annealed at 300 °C for 2 h, exhibits a saturation mobility of 3.35 cm2 V?1 s?1 and an on‐to‐off current ratio of ≈108. Interestingly, through prolonging the annealing time to 4 h, the electrical parameters of IZO TFTs annealed at 230 °C are comparable with the TFTs annealed at 300 °C. Finally, fully WI IZO TFT based on YOx dielectric is integrated and investigated. This TFT device can be regarded as “green electronics” in a true sense, because no organic‐related additives are used during the whole device fabrication process. The as‐fabricated IZO/YOx TFT exhibits excellent electron transport characteristics with low operating voltage (≈1.5 V), small subthreshold swing voltage of 65 mV dec?1 and the mobility in excess of 25 cm2 V?1 s?1.  相似文献   

4.
The exotic photophysical properties of organic–inorganic hybrid perovskite with long exciton lifetimes and small binding energy have appeared as promising front‐runners for next‐generation non‐volatile flash photomemory. However, the long photo‐programming time of photomemory limits its application on light‐fidelity (Li‐Fi), which requires high storage capacity and short programming times. Herein, the spatially addressable perovskite in polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO)/perovskite composite film as an photoactive floating gate is demonstrated to elucidate the effect of morphology on the photo‐responsive characteristics of photomemory. The chelation between lead ion and PEO segment promotes the anti‐solvent functionalities of the perovskite/PS‐b‐PEO composite film, thus allowing the solution‐processable poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) to act as the active channel. Through manipulating the interfacial area between perovskite and P3HT, fast photo‐induced charge transfer rate of 0.056 ns?1, high charge transfer efficiency of 89%, ON/OFF current ratio of 104, and extremely low programming time of 5 ms can be achieved. This solution‐processable and fast photo‐programmable non‐volatile flash photomemory can trigger the practical application on Li‐Fi.  相似文献   

5.
Low‐voltage self‐assembled monolayer field‐effect transistors (SAMFETs) that operate under an applied bias of less than ?3 V and a high hole mobility of 10?2 cm2 V?1 s?1 are reported. A self‐assembled monolayer (SAM) with a quaterthiophene semiconducting core and a phosphonic acid binding group is used to fabricate SAMFETs on both high‐voltage (AlOx/300 nm SiO2) and low‐voltage (HfO2) dielectric platforms. High performance is achieved through enhanced SAM packing density via a heated assembly process and through improved electrical contact between SAM semiconductor and metal electrodes. Enhanced electrical contact is obtained by utilizing a functional methylthio head group combined with thermal annealing post gold source/drain electrode deposition to facilitate the interaction between SAM and electrode.  相似文献   

6.
The development of solution‐processed field effect transistors (FETs) based on organic and hybrid materials over the past two decades has demonstrated the incredible potential in these technologies. However, solution processed FETs generally require impracticably high voltages to switch on and off, which precludes their application in low‐power devices and prevent their integration with standard logic circuitry. Here, a universal and environmentally benign solution‐processing method for the preparation of Ta2O5, HfO2 and ZrO2 amorphous dielectric thin films is demonstrated. High mobility CdS FETs are fabricated on such high‐κ dielectric substrates entirely via solution‐processing. The highest mobility, 2.97 cm2 V?1 s?1 is achieved in the device with Ta2O5 dielectric with a low threshold voltage of 1.00 V, which is higher than the mobility of the reference CdS FET with SiO2 dielectric with an order of magnitude decrease in threshold voltage as well. Because these FETs can be operated at less than 5 V, they may potentially be integrated with existing logic and display circuitry without significant signal amplification. This report demonstrates high‐mobility FETs using solution‐processed Ta2O5 dielectrics with drastically reduced power consumption; ≈95% reduction compared to that of the device with a conventional SiO2 gate dielectric.  相似文献   

7.
This work demonstrates that threshold voltage (VT) of organic thin‐film transistors (OTFTs) can be controlled systematically by introducing new copolymer dielectrics with electropositive functionality. A series of homogeneous copolymer dielectrics are polymerized from two monomers, 1,3,5‐trimethyl‐1,3,5‐trivinyl cyclotrisiloxane (V3D3) and 1‐vinylimidazole (VI), via initiated chemical vapor deposition. The chemical composition of the copolymer dielectrics is exquisitely controlled to tune the VT of C60 OTFTs. In particular, all the copolymer dielectrics demonstrated in this work exhibit extremely low leakage current densities (lower than 2.5 × 10?8 A cm?2 at ±3 MV cm?1) even with a thickness less than 23 nm. Furthermore, by introducing an ultrathin pV3D3 interfacial layer (about 3 nm) between the copolymer dielectrics and C60 semiconductor, the high mobility of the C60 OTFTs (about 1 cm2 V?1 s?1) remains unperturbed, showing that VT can be controlled independently by tuning the composition of the copolymer dielectrics. Coupled with the ultralow dielectric thickness, the independent VT controllability allows the VT to be aligned near 0 V with sub‐3 V operating voltage, which enables a substantial decrease of device power consumption. The suggested method can be employed widely to enhance device performance and reduce power consumption in various organic integrated circuit applications.  相似文献   

8.
We have investigated the electrical characteristics of hybrid dielectrics with a thickness of 6 nm or less that are composed of a plasma-grown aluminum oxide (AlOx) layer and a self-assembled monolayer (SAM) of an aliphatic phosphonic acid. The impact of the quality of the AlOx layer on the insulating properties of the double-layer dielectrics was assessed by comparing two different oxidation procedures, and the influence of the thickness of the organic SAM was evaluated by employing molecules with five different chain lengths. In order to decouple the relative contributions of the oxide and the SAM to the performance of the double-layer dielectrics we have also performed cyclic voltammetry measurements on indium tin oxide (ITO)/SAM devices without AlOx layer. Finally, we have evaluated how the quality of the AlOx layer and the thickness of the SAM affect the performance of low-voltage organic thin-film transistors (TFTs) that employ the thin AlOx/SAM dielectrics as the gate dielectric. The results confirm the important role of the SAM in determining the breakdown voltage, in limiting the current density, and in compensating the somewhat lower quality of AlOx layers produced under mild plasma conditions.  相似文献   

9.
Exfoliating graphite to graphene has attracted great attention due to the fantastic properties of graphene available for designing graphene‐based materials or devices. Besides the classic solution method, herein a unique role of TiO2 in exfoliating graphite to be graphene layers effectively is reported. As a paradigm, this discovered effect of TiO2 is significant for preparing high‐performance graphene‐modified SiOx‐based anode in lithium‐ion batteries (LIBs), in which the graphite is in situ exfoliated mechanically by TiO2 to be multilayered graphene (i.e., MLG) and then the SiOx is wrapped by the MLG to construct a SiOx/TiO2@MLG. In this case, an extremely high capacity of 1484 mAh g?1, long lifespan over 1200 cycles at 2 A g?1, as well as good performance in full LIBs (vs nickel‐rich cathode) are demonstrated. It is confirmed that the MLG can enhance electric conductivity, mitigate electrolyte decomposition, and alleviate volume effect of the SiOx effectively. This result is hard to be achieved using other kinds of metal oxide besides TiO2. It is hoped that the SiOx/TiO2@MLG is practical for pursuing LIBs with an energy density beyond 300 Wh kg?1. In addition, it is believed the ingenious strategy is applicable for designing more functional materials with greater capabilities.  相似文献   

10.
Metal–organic frameworks (MOFs) and relative structures with uniform micro/mesoporous structures have shown important applications in various fields. This paper reports the synthesis of unprecedented mesoporous NixCo3?xO4 nanorods with tuned composition from the Co/Ni bimetallic MOF precursor. The Co/Ni‐MOFs are prepared by a one‐step facile microwave‐assisted solvothermal method rather than surface metallic cation exchange on the preformed one‐metal MOF template, therefore displaying very uniform distribution of two species and high structural integrity. The obtained mesoporous Ni0.3Co2.7O4 nanorod delivers a larger‐than‐theoretical reversible capacity of 1410 mAh g?1 after 200 repetitive cycles at a small current of 100 mA g?1 with an excellent high‐rate capability for lithium‐ion batteries. Large reversible capacities of 812 and 656 mAh g?1 can also be retained after 500 cycles at large currents of 2 and 5 A g?1, respectively. These outstanding electrochemical performances of the ternary metal oxide have been mainly attributed to its interconnected nanoparticle‐integrated mesoporous nanorod structure and the synergistic effect of two active metal oxide components.  相似文献   

11.
Developing earth‐abundant, active, and robust electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a vital challenge for efficient conversion of sustainable energy sources. Herein, metal–semiconductor hybrids are reported with metallic nanoalloys on various defective oxide nanowire arrays (Cu/CuOx, Co/CoOx, and CuCo/CuCoOx) as typical Mott–Schottky electrocatalysts. To build the highway of continuous electron transport between metals and semiconductors, nitrogen‐doped carbon (NC) has been implanted on metal–semiconductor nanowire array as core–shell conductive architecture. As expected, NC/CuCo/CuCoOx nanowires arrays, as integrated Mott–Schottky electrocatalysts, present an overpotential of 112 mV at 10 mA cm?2 and a low Tafel slope of 55 mV dec?1 for HER, simultaneously delivering an overpotential of 190 mV at 10 mA cm?2 for OER. Most importantly, NC/CuCo/CuCoOx architectures, as both the anode and the cathode for overall water splitting, exhibit a current density of 10 mA cm?2 at a cell voltage of 1.53 V with excellent stability due to high conductivity, large active surface area, abundant active sites, and the continuous electron transport from prominent synergetic effect among metal, semiconductor, and nitrogen‐doped carbon. This work represents an avenue to design and develop efficient and stable Mott–Schottky bifunctional electrocatalysts for promising energy conversion.  相似文献   

12.
Organic field‐effect transistor (FET) memory is an emerging technology with the potential to realize light‐weight, low‐cost, flexible charge storage media. Here, solution‐processed poly[9,9‐dioctylfluorenyl‐2,7‐diyl]‐co‐(bithiophene)] (F8T2) nano floating gate memory (NFGM) with a top‐gate/bottom‐contact device configuration is reported. A reversible shift in the threshold voltage (VTh) and reliable memory characteristics was achieved by the incorporation of thin Au nanoparticles (NPs) as charge storage sites for negative charges (electrons) at the interface between polystyrene and cross‐linked poly(4‐vinylphenol). The F8T2 NFGM showed relatively high field‐effect mobility (µFET) (0.02 cm2 V?1 s?1) for an amorphous semiconducting polymer with a large memory window (ca. 30 V), a high on/off ratio (more than 104) during writing and erasing with an operation voltage of 80 V of gate bias in a relatively short timescale (less than 1 s), and a retention time of a few hours. This top‐gated polymer NFGM could be used as an organic transistor memory element for organic flash memory.  相似文献   

13.
High‐mobility ZnO thin films are deposited onto solution‐processed ZrO2 dielectrics in order to investigate the large differences between experimental field‐effect mobility values obtained when transparent conductive oxide (TCO) materials are deposited onto high‐k dielectrics as opposed to thermally grown SiO2. Through detailed electrical characterization, the mobility enhancement in ZnO is correlated to the presence of electron traps in ZrO2 serving to provide an additional source of electrons to the ZnO. Furthermore, as a consequence of the general tendency for solution‐processed high‐k dielectrics to exhibit similar behavior, the broad applicability is suggested to other TCO/high‐k material combinations in agreement with experimental observations.  相似文献   

14.
Effective metal work function, Φm,eff, and oxide charge, Qox, were determined on MOS capacitors with slanted high-κ dielectric. Φm,eff and Qox were extracted using flat-band voltage shift versus equivalent oxide thickness data, both deduced from the capacitance–voltage measurements. Slanted HfSiOx dielectric (initial thickness was 9 nm) was prepared by gradual etching in HF-based solution. As a metal electrode, thin Ru-films were deposited by MOCVD-derived technique—Atomic Vapor Deposition® on the slanted HfSiOx as well as SiO2 dielectrics. The Φm,eff of Ru was found to be 4.74 and 4.81 eV for Ru/HfSiOx and Ru/SiO2 gate stacks, respectively. Ultraviolet photoelectron spectroscopy yields the work function of 4.62 eV in agreement with the capacitance–voltage data. We also studied the I–V characteristics of the Ru/HfSiOx/Si MOS capacitors. The barrier height was found to be constant within the HfSiOx bulk.  相似文献   

15.
Interdependence of chemical structure, thin‐film morphology, and transport properties is a key, yet often elusive aspect characterizing the design and development of high‐mobility, solution‐processed polymers for large‐area and flexible electronics applications. There is a specific need to achieve >1 cm2 V?1 s?1 field‐effect mobilities (μ) at low processing temperatures in combination with environmental stability, especially in the case of electron‐transporting polymers, which are still lagging behind hole transporting materials. Here, the synthesis of a naphthalene‐diimide based donor–acceptor copolymer characterized by a selenophene vinylene selenophene donor moiety is reported. Optimized field‐effect transistors show maximum μ of 2.4 cm2 V?1 s?1 and promising ambient stability. A very marked film structural evolution is revealed with increasing annealing temperature, with evidence of a remarkable 3D crystallinity above 180 °C. Conversely, transport properties are found to be substantially optimized at 150 °C, with limited gain at higher temperature. This discrepancy is rationalized by the presence of a surface‐segregated prevalently edge‐on packed polymer phase, dominating the device accumulated channel. This study therefore serves the purpose of presenting a promising, high‐electron‐mobility copolymer that is processable at relatively low temperatures, and of clearly highlighting the necessity of specifically investigating channel morphology in assessing the structure–property nexus in semiconducting polymer thin films.  相似文献   

16.
Highly efficient non‐noble metal electrocatalysts are vital for metal–air batteries and fuel cells. Herein, a noble‐metal–free single‐atom Fe‐N x‐C electrocatalyst is synthesized by incorporating Fe‐Phen complexes into the nanocages in situ during the growth of ZIF‐8, followed by pyrolysis at 900 °C under inert atmosphere. Fe‐Phen species provide both Fe2+ and the organic ligand (Phen) simultaneously, which play significant roles in preparing single‐atom catalysts. The obtained Fe‐Nx‐C exhibits a half‐wave potential of 0.91 V for the oxygen reduction reaction, higher than that of commercial Pt/C (0.82 V). As a cathode catalyst for primary zinc–air batteries (ZABs), the battery shows excellent electrochemical performances in terms of the high open‐circuit voltage (OCV) of 1.51 V and a high power density of 96.4 mW cm?2. The rechargeable ZAB with Fe‐Nx‐C catalyst and the alkaline electrolyte shows a remarkable cycling performance for 300 h with an initial round‐trip efficiency of 59.6%. Furthermore, the rechargeable all‐solid‐state ZABs with the Fe‐Nx‐C catalyst show high OCV of 1.49 V, long cycle life for 120 h, and foldability. The single‐atom Fe‐Nx‐C electrocatalyst may function as a promising catalyst for various metal–air batteries and fuel cells.  相似文献   

17.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

18.
Highly stretchable, high‐mobility, and free‐standing coplanar‐type all‐organic transistors based on deformable solid‐state elastomer electrolytes are demonstrated using ionic thermoplastic polyurethane (i‐TPU), thereby showing high reliability under mechanical stimuli as well as low‐voltage operation. Unlike conventional ionic dielectrics, the i‐TPU electrolyte prepared herein has remarkable characteristics, i.e., a large specific capacitance of 5.5 µF cm?2, despite the low weight ratio (20 wt%) of the ionic liquid, high transparency, and even stretchability. These i‐TPU‐based organic transistors exhibit a mobility as high as 7.9 cm2 V?1 s?1, high bendability (Rc, radius of curvature: 7.2 mm), and good stretchability (60% tensile strain). Moreover, they are suitable for low‐voltage operation (VDS = ?1.0 V, VGS = ?2.5 V). In addition, the electrical characteristics such as mobility, on‐current, and threshold voltage are maintained even in the concave and convex bending state (bending tensile strain of ≈3.4%), respectively. Finally, free‐standing, fully stretchable, and semi‐transparent coplanar‐type all‐organic transistors can be fabricated by introducing a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonic acid layer as source/drain and gate electrodes, thus achieving low‐voltage operation (VDS = ?1.5 V, VGS = ?2.5 V) and an even higher mobility of up to 17.8 cm2 V?1 s?1. Moreover, these devices withstand stretching up to 80% tensile strain.  相似文献   

19.
While perovskite light‐emitting diodes typically made with high work function anodes and low work function cathodes have recently gained intense interests. Perovskite light‐emitting devices with two high work function electrodes with interesting features are demonstrated here. Firstly, electroluminescence can be easily obtained from both forward and reverse biases. Secondly, the results of impedance spectroscopy indicate that the ionic conductivity in the iodide perovskite (CH3NH3PbI3) is large with a value of ≈10?8 S cm?1. Thirdly, the shift of the emission spectrum in the mixed halide perovskite (CH3NH3PbI3?xBrx) light‐emitting devices indicates that I? ions are mobile in the perovskites. Fourthly, this work shows that the accumulated ions at the interfaces result in a large capacitance (≈100 μF cm?2). The above results conclusively prove that the organic–inorganic halide perovskites are solid electrolytes with mixed ionic and electronic conductivity and the light‐emitting device is a light‐emitting electrochemical cell. The work also suggests that the organic–inorganic halide perovskites are potential energy‐storage materials, which may be applicable in the field of solid‐state supercapacitors and batteries.  相似文献   

20.
Excellent passivation of boron emitters is realised using AlOx/SiNx dielectric stacks deposited in an industrial inline plasma‐enhanced chemical vapour deposition reactor. Very low emitter saturation current density (J0e) values of 10 and 45 fA/cm2 are obtained for 180 and 30 Ω/sq planar p+ emitters, respectively. For textured p+ emitters, the J0e was found to be 1.5–2 times higher compared with planar emitters. The required thermal activation of the AlOx films is performed in a standard industrial fast‐firing furnace, making the developed passivation stack industrially viable. We also show that an AlOx thickness of 5 nm in the AlOx/SiNx stack is sufficient for obtaining a J0e of 18 fA/cm2 for planar 80 Ω/sq p+ emitters, which corresponds to a 1‐sun open‐circuit voltage limit of the solar cell of 736 mV at 25 °C. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号