首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
矩阵式变换器技术研究概况   总被引:3,自引:0,他引:3  
矩阵式变换器是一种直接型交流-交流电力电子变频装置,具有能量双向流通、正弦输入输出电流、输入功率因数为1等一系列优点。在过去的三十年间,矩阵式变换器技术的研究与开发取得了长足的进展。本文对国内外矩阵式变换器的研究历程进行了概述,并归纳总结了矩阵式变换器存在的主要问题以及近年来的研究热点。  相似文献   

2.
This paper is an improved version of a previous study that described a boost pulse-width-modulated (PWM) soft-single-switched power converter, which, having only a single active switch, is able to operate with soft switching in a PWM way without high voltage and current stresses. In addition, such a power converter can work at high-switching frequencies for a wide load range. In order to illustrate the operating principles of this power converter, a detailed study, including simulations and experimental tests, is carried out. The validity of this power converter is guaranteed by the obtained results  相似文献   

3.
The interleaved boost power converter has the advantages of ripple cancellation and better efficiency. The major problem of the interleaved boost power converter is the current balancing among different phases of the boost power converters. In this paper, a current balancing control method for equalizing the currents of two-phase interleaved boost power converter is proposed. The output current can effectively detect the mismatch between the boost power converters for the interleaved boost power converter. The output current is used to perform both the current balance and the current-mode control. The salient feature is that only one current sensor is used in the proposed current balancing control method. A hardware prototype is developed, and the experimental results verify the performance of the proposed current balancing control method is as expected.  相似文献   

4.
Coupled inductor techniques supply a method to reduce the power converter size and weight and achieve ripple-free current. The boost power converter is a very popular topology in industry. However, the input-current ripple hinders efforts to meet electromagnetic interference (EMI) requirements. In particular, the input current becomes discontinuous and pulsating when the conventional boost power converter operates in the discontinuous inductor-current mode. This paper describes a boost power converter which has the same discontinuous properties as the conventional boost power converter. However, the proposed boost topology has continuous or ripple-free input current when it operates with discontinuous inductor-current. The proposed topology is compared with traditional converter topologies, such as the Sepic and Cuk power converters. Simulation results are presented. The prototype is built to demonstrate the theoretical prediction. The proposed boost topology is simple, with straightforward control [the same as pulse-width modulation (PWM)]  相似文献   

5.
A PWM voltage rectifier has useful characteristics on its DC and AC sides. On its DC side, a DC-link unidirectional voltage is obtained and bidirectional power transfer capability is possible by reversing the flow direction of the DC-link current. On its AC side, near sinusoidal current waveforms and AC four-quadrant operation can be obtained, leading to high-quality power being exchanged between the power converter and the mains. The use of AC filters becomes unnecessary. The rectifier DC voltage must be regulated to a constant value. In this paper, three solutions for the DC voltage control are presented. In the first solution, the DC voltage is controlled by acting upon the quadrature component of the power converter fundamental Park's voltages with relation to the mains voltages. Slow responses are necessary because of stability reasons. Also, load power variations produce both active and reactive power variations in the power converter AC side. To improve the DC voltage response, a second control solution is presented. The power converter currents in Park's coordinates must be controlled. The DC voltage is controlled by controlling the direct Park's current component and, thus, acting only on the active power of the converter AC side. Faster responses are achieved. In this case, load power variations do not produce reactive power variations in the converter AC side. The third control solution is a simplified version of this last one. Experimental results from a 2 kVA IGBT-based prototype showing good system dynamic performance are presented  相似文献   

6.
This paper proposes two novel circuits which realize a unity input power factor single-phase to three-phase converter with a motor load. The power supply is connected to the neutral point of the motor, and the three-phase inverter is controlled to act also as a virtual AC/DC power converter leg. This virtual leg is controlled by zero vectors of the three-phase inverter. The main features of these circuits are as follows: no inductive components are required; a reduction in the number of switching devices compared with conventional topologies; and motor current increases because converter input current also flows through the motor windings. A full-bridge converter can be built using the same number of switching devices as the conventional half bridge and with no need for a capacitive leg with an accessible neutral point. In this paper, the proposed full-bridge-type circuit is experimentally tested using a 750-W induction motor as load  相似文献   

7.
IEC 1000-3-2 regulations impose a reduced harmonic content on any converter with an input power higher than 75 W. However, if the power architecture of the system is based on small on-board converters, and the total power is higher than 75 W, IEC regulations must be fulfilled although each individual converter need not comply with the regulations. In this paper, one of the different possible solutions is presented. Each on-board converter has an active input current shaper (AICS) in order to reduce the input current harmonic content of each converter and, hence, to comply with IEC 1000-3-2 regulations. Moreover, two different types of AICSs were compared: the conventional one and a new type of AICS based on a full-wave rectifier  相似文献   

8.
In this paper, a robust low quiescent current complementary metal-oxide semiconductor (CMOS) power receiver for wireless power transmission is presented. This power receiver consists of three main parts including rectifier, switch capacitor DC–DC converter and low-dropout regulator (LDO) without output capacitor. The switch capacitor DC–DC converter has variable conversion ratios and synchronous controller that lets the DC–DC converter to switch among five different conversion ratios to prevent output voltage drop and LDO regulator efficiency reduction. For all ranges of output current (0–10 mA), the voltage regulator is compensated and is stable. Voltage regulator stabilisation does not need the off-chip capacitor. In addition, a novel adaptive biasing frequency compensation method for low dropout voltage regulator is proposed in this paper. This method provides essential minimum current for compensation and reduces the quiescent current more effectively. The power receiver was designed in a 180-nm industrial CMOS technology, and the voltage range of the input is from 0.8 to 2 V, while the voltage range of the output is from 1.2 to 1.75 V, with a maximum load current of 10 mA, the unregulated efficiency of 79.2%, and the regulated efficiency of 64.4%.  相似文献   

9.
利用了电压环和峰值电流环控制大功率推挽DC/DC变换器,提出消除主变偏磁的策略,设计了3kW推挽变换器,利用MATLAB仿真验证了该控制策略可以消除主变偏磁。该策略已用于低压大功率的变换器。  相似文献   

10.
In this paper, a simple single-stage AC/DC converter based on the flyback topology is presented. With a single switch, a fast-regulated output voltage is achieved and, although the line current is not sinusoidal, the converter complies with the Standard IEC 1000-3-2 about low frequency harmonies for a medium power range (50-500 W). The major advantages of this converter are the size and the efficiency. Design guidelines, analysis of the line current, and extensions to other topologies are analyzed. Experimental results are included in the paper  相似文献   

11.
A monolithic current-mode CMOS DC-DC converter with integrated power switches and a novel on-chip current sensor for feedback control is presented in this paper. With the proposed accurate on-chip current sensor, the sensed inductor current, combined with the internal ramp signal, can be used for current-mode DC-DC converter feedback control. In addition, no external components and no extra I/O pins are needed for the current-mode controller. The DC-DC converter has been fabricated with a standard 0.6-/spl mu/m CMOS process. The measured absolute error between the sensed signal and the inductor current is less than 4%. Experimental results show that this converter with on-chip current sensor can operate from 300 kHz to 1 MHz with supply voltage from 3 to 5.2 V, which is suitable for single-cell lithium-ion battery supply applications. The output ripple voltage is about 20 mV with a 10-/spl mu/F off-chip capacitor and 4.7-/spl mu/H off-chip inductor. The power efficiency is over 80% for load current from 50 to 450 mA.  相似文献   

12.
为了满足升压型变换器低成本和大功率密度的需求,本文提出了一种软开关单极隔离型DC-DC变换器。该变换器电路包含一个无损耗缓冲器,通过漏电感固定住开关的电压峰值,从而实现开关的ZVS关断。在失谐状态下,使用Lr-Cr串联谐振电路来实现二极管的ZCS关断。由于磁化电流低,相较于传统的基于反激的变换器,变压器的容量更少。在输出功率250W和开关频率100kHz的条件下进行了实际测试,提出的变换器的最大测量效率为97.0%。  相似文献   

13.
文章研究了一种基于PWM整流器的功率控制器。由三相电压型整流器在三相静止坐标系中的数学模型,导出其在两相旋转坐标系的数学模型,并在此基础上引入了基于电网电压前馈解耦的三相PWM整流器控制系统,实现对于有功电流和无功电流的单独控制,从而达到对于有功、无功功率控制的目的。  相似文献   

14.
In this paper, a three-port converter with three active full bridges, two series-resonant tanks, and a three-winding transformer is proposed. It uses a single power conversion stage with high-frequency link to control power flow between batteries, load, and a renewable source such as fuel cell. The converter has capabilities of bidirectional power flow in the battery and the load port. Use of series-resonance aids in high switching frequency operation with realizable component values when compared to existing three-port converter with only inductors. The converter has high efficiency due to soft-switching operation in all three bridges. Steady-state analysis of the converter is presented to determine the power flow equations, tank currents, and soft-switching region. Dynamic analysis is performed to design a closed-loop controller that will regulate the load-side port voltage and source-side port current. Design procedure for the three-port converter is explained and experimental results of a laboratory prototype are presented.   相似文献   

15.
When a "classical" current control scheme is applied, the line current of a boost power-factor-correction (PFC) converter leads the line voltage, resulting in a nonunity fundamental displacement power factor and in important zero-crossing distortion in applications with a high line frequency (e.g., 400-Hz power systems on commercial aircraft). To resolve this problem, a current-control scheme is proposed using duty-ratio feedforward. In this paper, the input impedance of the boost PFC converter for both the classical current-loop controller and the controller using duty-ratio feedforward are derived theoretically. A comparison reveals the advantages of the proposed control scheme: a low total harmonic distortion of the line current, a resistive input impedance, virtually no zero-crossing distortion, and a fundamental displacement power factor close to unity. The theoretical results obtained are verified using an experimental setup of a digitally controlled boost PFC converter.  相似文献   

16.
In this paper, the analysis and design of a modular three-phase ac-to-dc converter using single-phase isolated CUK rectifier modules is discussed based on power balance control technique. This paper analyzes the operation of a modular converter as continuous-conduction-mode power factor correction (CCM-PFC). Design equations, as well as an average small-signal model of the proposed system to aid the control loop design are derived. It is used to obtain the inductor current compensator, thus the output impedance and audio susceptibility become zero, and therefore, the output voltage of the converter presented in this paper is independent of the variations of the dc load current and the utility voltage. The control strategy consists of a single output voltage loop and three-inductor current calculator. The main objective of the proposed system is to reduce the number of stages and improve dynamic response of dc bus voltage for distributed power system. The proposed scheme offers simple control strategy, flexibility in three-phase delta or star-connected, simpler design, fast transient response, good inductor current sharing, and power factor closed to unity. Both simulation and experimental results are presented. They are in agreement with the theoretical analysis and experimental work.   相似文献   

17.
The connection of distributed power sources with the utility grid generally needs an electronic power converter for processing the locally generated power and injecting current into the system. If the source provides a dc voltage, the converter must be able to produce a low-distortion high-power-factor ac current. The same aspects related with the voltage and current distortion produced by nonlinear loads can be considered for the injection of power into the grid. In the absence of a specific standard, this paper takes as a reference the limits for current harmonics given by international standards. The justification for this approach is that, from the resulting line voltage degradation, there is no difference between injected and absorbed currents. This paper presents a three-phase inverter using low-frequency commutation. An auxiliary circuit is added to the inverter topology to reduce the output voltage distortion, thus improving the current waveform. The main advantages of this approach are the minimization of the switching losses and the elimination of the electromagnetic interference, which avoids high-frequency filters necessary in high-frequency commutation inverters  相似文献   

18.
本文提出并实现了一种面向电流模式单片开关DC/DC转换器的低压高效片上电流采样电路.该电路利用功率管等效电阻电流检测技术和无需OP放大器的源极输入差分电压放大技术,使电路的应用范围可低达2.3V;-3dB带宽12MHz;在最大负载电流情况下的静态电流峰值仅19μA,比常规采用功率管镜像电流检测技术的静态电流峰值低1.5个量级左右.转换器基于0.5μm 2P3M Mixed Signal CMOS工艺设计制作.测试结果表明,电流检测电路的最大检测电流1.1A,转换器的输入最低电压2.3V,重负载转换效率高于93%.  相似文献   

19.
This paper describes a new approach to select the optimum sinewave pulsewidth modulation (PWM) patterns suitable for a large-capacity current-fed active PWM power converter and a practical design procedure to determine circuit constants of a low-pass filter connected to suppress higher line current harmonics flowing into the utility-grid AC power source. A feasible test is implemented by building a prototype 500 kW three-phase current-fed PWM power converter which is designed and controlled on the basis of the proposed considerations. It is verified from a practical point of view that these new conceptual considerations are more effective and acceptable to minimize higher harmonic current components flowing into the utility-grid AC power source. This experimental setup provides highly efficient steady-state characteristics of the current-fed three-phase PWM power converter under the operating condition of a unity power factor correction and sinewave line current shaping schemes. Furthermore, this unique optimum PWM pattern derived from the theoretical method proposed here is conveniently applicable to a voltage-fed three-phase PWM converter. It is verified that this optimum PWM pattern provides excellent switching performance with a lower switching frequency mode than the conventional carrier-based PWM scheme  相似文献   

20.
This paper presents a new high-efficiency grid-connected single-phase converter for fuel cells. It consists of a two-stage power conversion topology. Since the fuel cell operates with a low voltage in a wide voltage range (25?V–45?V) this voltage must be transformed to around 350–400?V in order to be able to invert this dc power into ac power to the grid. The proposed converter consists of an isolated dc–dc converter cascaded with a single-phase H-bridge inverter. The dc–dc converter is a current-fed push-pull converter. The inverter is controlled as a standard single-phase power factor controller with resistor emulation at the output. Experimental results of converter efficiency, grid performance and fuel cell dynamic response are shown for a 1?kW prototype. The proposed converter exhibits a high efficiency in a wide power range (higher than 92%) and the inverter operates with a near-unity power factor and a low current THD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号