首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
设计并制作了一种"四悬臂梁-中心质量块"结构的振动能量拾取微机电系统(MEMS)压电式微能源,实现了环境振动能量向电能的转换。首先利用溶胶-凝胶工艺完成锆钛酸铅(PbZrxTi1-xO3,PZT)压电薄膜的异质集成制备;然后通过MEMS工艺和引线键合技术进行器件基础结构的集成制造;最后借助振动测试系统对该器件的各项输出性能进行测试。测试结果表明,8Hz谐振频率工作状态下,该压电式微能源器件的输出电压峰-峰值随着加速度激励的增加呈线性增大,当加速度激励为10 m/s2时,该能量采集器件的输出电压峰-峰值为82.4mV。在器件两端加载2.0 MΩ的负载时,器件输出功率密度达最大值(为2.074 3μW/cm3)。  相似文献   

2.
MEMS压电-磁电复合式振动能量采集器   总被引:1,自引:0,他引:1  
具有高能量输出密度的自我供电振动能量采集技术有着迫切的应用需求,是智能化MEMS器件系统发展的重要方向。研究了一种可将外界环境振动能转化为电能的MEMS压电-磁电复合振动能量采集器,其综合了压电发电和磁电发电的优势,为新型MEMS供电研究提供了新思路。利用溶胶-凝胶工艺完成锆钛酸铅(PZT)压电功能薄膜的制备,采用MEMS加工技术完成器件四悬臂梁-中心质量块基础结构的设计和制作,结合集成封装技术实现微结构与永磁铁的微组装。测试结果表明:在一阶谐振频率247 Hz,10 g加速度激励的振动状态下,器件压电部分压电敏感单元与磁电部分电感线圈的单位体积最大有效输出电压分别为2.066×107和5.002×106 mV/cm3。  相似文献   

3.
压电材料电荷能量回收技术研究   总被引:1,自引:0,他引:1  
对压电材料电荷能量回收性能进行研究。通过在压电驱动器收缩时间回收其在伸展时储存于其电场和应变场中的能量,来提高对驱动压电驱动器动作的激励电源使用效率。借助瞬时电容器(flying capacitor)所构成的一套封闭系统来实现电荷能量回收与利用,通过瞬时电容器与另一电容器串并联连接方式的不断切换,来有效收集封闭系统中压电驱动器上电荷,提高对电源利用率;同时,通过对电容串并联切换时间控制,实现压电驱动器所要求的振动频率。文章最后给出了实验结果。  相似文献   

4.
为了提高压电式振动能量回收系统的能量回收能力和解决在负载变化使能量回收效率变差的问题,以悬臂梁式压电振动发电系统为例,提出了一种高效的压电振动能量收集电路设计方案,即并联型双同步开关电感接口电路,可将压电梁转换振动能量得到的电能高效地储存到电容中。实验结果表明,压电梁在频率为38.4Hz、加速度有效值为0.035m/s2振动激励下工作时,给出的并联双同步开关能量回收(P-DSSH)接口电路可释放的瞬时功率达0.25mW,是全桥整流接口电路(SEH)最优功率的5.8倍,是并联同步开关电感(P-SSHI)接口电路可释放的瞬时功率的2.2倍,是LTC3588-1电路可释放的瞬时功率的1.27倍,且其工作不受负载变化的影响。  相似文献   

5.
设计了一种低频压电d31模式的"八悬臂梁-中心质量块"结构微机电系统(MEMS)振动能量采集器,实现环境振动能量向电能的转换。首先利用溶胶-凝胶工艺实现PZT压电薄膜的异质集成制造,单个锆钛酸铅(PZT)压电敏感单元的有效尺寸为935μm×160μm×1.5μm;然后通过MEMS加工工艺完成器件微结构的加工制造,器件结构有效体积为9.936×10~(-4)cm~3;最后借助振动测试系统对该器件的各项输出性能进行测试。测试结果表明,谐振频率为60Hz、加速度激励为1g(g=9.8m/s~2)时,该能量采集器的输出电压峰-峰值为232mV。在其两端加载3.0 MΩ的负载时最大输出功率为6×10~(-4)μW,输出功率密度为0.604μW/cm~3,PZT压电敏感单元有效面积下的输出功率密度为0.025μW/cm~2。  相似文献   

6.
基于压电效应的MEMS振动式微能源器件   总被引:1,自引:0,他引:1  
设计了一种硅基压电功能材料的四悬臂梁-中心质量块结构MEMS振动式微能源器件,可将环境振动能量有效转化为电能。采用溶胶-凝胶法制备硅基锆钛酸铅(PbZr0.53Ti0.47O3,PZT)压电功能薄膜,经干/湿法刻蚀和溅射沉积等MEMS工艺实现器件功能结构的制备。研制的器件整体结构尺寸为7 000μm×7 000μm×300μm,单个PZT压电单元面积为0.149 6 mm2。将悬臂梁上4个压电单元串联以实现输出最大化,测试结果表明,器件的谐振频率为300 Hz,适于低频振动环境;输出电压在一定范围内随加速度增加而增大;在加速度为10 g时压电单元单位面积输出电压达1.19 mV/mm2。  相似文献   

7.
为了实现对轮船发动机故障监测系统的可持续供电,针对轮船发动机振动特性以及故障监测系统应用需求,设计了一种基于d31工作模式的微机电系统(MEMS)压电振动能量收集器。该能量收集器采用了共质量块压电悬臂梁阵列结构,与传统单梁结构相比,其降低了MEMS压电振动能量收集器的机械阻尼。通过ANSYS软件对结构进行了优化设计,得到压电悬臂梁的优化尺寸为2.72mm×3.55mm×0.125mm,硅质量块的优化尺寸为14mm×8.45 mm×0.575 mm。设计了器件的加工工艺流程,并完成了芯片的制作。在加速度2g(g=9.8m/s2),谐振频率606Hz,最优化负载45kΩ下,输出电压为4.32V,输出功率为414.7μW,能够满足故障检测系统的可持续供电需求。  相似文献   

8.
归纳了国内外自供能微电源技术的研究现状,阐述了环境能量采集技术结构设计与能量转换机理。当前能量采集器主要依靠特殊功能材料完成能量转换,耦合方式包括:压电效应、磁致伸缩效应、摩擦发电效应、热释电效应、静电效应、光电效应等。能量来源包括:振动机械能、磁场能、摩擦能、温差能、风能、海洋能和太阳能等。能量采集器的结构形式有单一能量转换和复合能量转换等。为了提高能量采集装置的发电性能,研究重点是结构优化设计、换能材料改性、降低储能电路自损耗等。自供能微电源未来的发展趋势包括增强环境自适应能力、改进自供电能量转换效率、加快实用化步伐等。  相似文献   

9.
压电发电微电源国外研究进展   总被引:6,自引:1,他引:5  
微加工技术极大地促进了各类传感器系统的微型化、集成化,使微机电系统(MEMS)功能越来越强,功耗、体积越来越小,而微能源部分却日益成为MEMS微型化设计的瓶颈。该文系统介绍了一种在MEMS应用中有极具发展潜力的能源供应方式——压电微能源。压电微能源可通过收集环境能量来发电,具有长寿命、高能量密度、与MEMS工艺兼容等优点,在微系统中具有广泛的应用前景。  相似文献   

10.
为收集环境中普遍存在的振动能,设计了一种微型压电电磁式振动能量采集器,研究系统设计参数对输出功率的影响因素。依据压电电磁集成发电工作原理设计了复合采集器,建立能量转换的理论计算模型分析压电电磁复合发电系统的输出功率及其与感应线圈高度的关系,分别讨论了压电和电磁独立发电系统和集成发电系统等的输出功率及其相互关系。经反复试验确定了微电源集成制作流程。  相似文献   

11.
压电振子是实现振动能量捕获的重要基础,它的结构参数对其发电量和固有频率产生直接影响,需要进行优化设计.该文针对悬臂梁压电振子结构,采用ANSYS有限元建模方法,进行了静力学及模态仿真分析.研究了压电振子的各参数和质量块对其发电量、固有频率的影响规律,设计并搭建了实验台进行实验研究.实验结果验证了仿真分析的正确性,为压电振子的优化设计提供了依据.  相似文献   

12.
煤矿井下综采设备工作时会产生较大振动,利用压电振动能量收集系统实现煤矿综采设备无线监测节点自供电,有望解决传统化学电池使用寿命有限,更换困难,污染环境等问题。传统线性能量收集装置的谐振频率难以满足外界振动复杂多变的要求,导致俘能效率低下。如何提高压电振动系统俘能效率是一个亟待解决的问题。多方向是提高复杂振动环境压电俘能效率的有效途径。该文从击打式和悬臂梁式两种能量转换方式总结分析国内外学者在多方向振动能量收集方面的研究,从阵列式、自调谐、非线性、频率泵浦、弹性放大器等方面分析多方向振动能量收集系统的效率提升技术;最后,从采用新型压电材料提升俘能效率、考虑非线性和多场耦合动力学优化俘能结构、工程应用研究等方面对多方向压电能量收集技术进行了展望。  相似文献   

13.
目前压电振动能量收集成为微能量领域的研究热点.由于收集的能量较小,因此需要储能器件把收集的能量存储起来以便为电子元件供电.比较了常用的储能器件,包括电阻、电解电容器、超级电容器和可充电电池.研究了这些器件的充放电特性和应用状况,比较了这些器件的优缺点,结果发现,超级电容器可在低压状态下为电子元件有效供电,适合在压电能量收集中推广应用.  相似文献   

14.
研究了悬臂梁式压电振动能量回收装置压电片贴片位置和尺寸优化问题。首先分析推导出了应变方程、开路电压方程和压电能量方程,然后提出了运用开路电压和压电能量方程得到压电片的最优贴片位置和最优尺寸的优化方法,最后运用提出的优化方法通过理论计算得到了一、二阶模态下压电片最优贴片位置及最优尺寸,并运用abaqus软件进行了仿真分析。结果表明,理论计算与仿真分析结果基本吻合,一、二阶模态下压电片最优位置分别为梁的根部和中部,最优尺寸均约为梁长的一半。说明提出的压电片位置和尺寸优化方法是正确有效的。  相似文献   

15.
压电材料作为环境振动能量收集器的核心功能材料,是制备高性能能量收集器的关键。该文从提高能量收集效率入手,研究适合于能量转换的高性能压电陶瓷材料。采用两步合成工艺制备出了0.7Pb(Zr0.51Ti0.49)0.99O3-0.3Pb(Zn1/3Nb2/3)O3(PZT-PZN)压电陶瓷,研究了La2O3掺杂对其微观结构和机电性能的影响。实验结果表明,掺杂少量的La2O3能显著提高PZT-PZN陶瓷的压电系数(d33)、机电耦合系数(k31、kp)、介电常数(εr)等。当掺杂量为4%(摩尔分数)时,在1 200℃烧结PZT-PZN,显示出良好的压电和介电性能:d33=560pC/N,k31=0.376,kp=0.642,s1E1=16.5×10-12 m2/N,εr=3 125。  相似文献   

16.
为了更适用于为无线传感网络供电,设计了一种自供能双同步开关电感电路(Self-powered DSSH电路).在压电换能器中增加了2个压电片:一片为传感器,通过微分器和比较器产生与振动同步的脉冲信号;另一片为供能片,为微分器和比较器供能.由无源峰值检测开关组成的DC-DC变换器能及时地将能量回收为负载供电.实验结果证明,设计的自供能双同步开关电感电路输出功率达到305 μW,相比标准电路提高了3.05倍,且一直保持最佳输出功率.  相似文献   

17.
针对环境振动能量较小、振动源频带较宽导致压电能量收集系统输出功率较低的问题,探究了悬臂梁式结构能量收集系统采用并联或串联电感优化统输出功率的方法和特性,分析了不同并、串联电感值对输出功率的影响.鉴于压电悬臂梁的工作频率较低,匹配电感值较大,采用无损模拟电感进行了实验验证.理论分析与实验结果均表明,在不同的激振频率下对应不同的匹配电感值,在偏离谐振频率附近也可获得与谐振状态几乎相同的最大输出功率,从而拓宽了工作频率,提高了压电振动能量收集系统的能量收集水平.当激振频率分别是谐振频率的0.8和1.2倍时,并联或串联电感获得的最大输出功率分别是无电感纯电阻负载的26.4倍和18.2倍.  相似文献   

18.
随着物联网传感器网络的快速发展,微弱能量收集电路因其诸多优越性而备受关注。该文设计了一种基于压电能量收集技术的电路,其通过收集环境中的低频机械振动能量,经压电陶瓷(PZT)换能器产生交流电压,再经四倍压电路放大,并通过LTC3588-1电源管理电路整流变换,最终产生一个可供低功耗传感器工作的可切换的标准电压。实验结果表明,该电路可有效支持低功耗传感器正常工作。  相似文献   

19.
利用压电材料的环境振动能量收集技术具有能量密度大,无电磁干扰,较易收集的特点,该文提出一种自供电式压电振动能量采集电路,即基于耦合电感的同步电荷提取和电压翻转电路(SCET&VII),利用电子仿真软件LTspice对标准能量采集(SEH)电路、同步电荷提取(SECE)电路和SCET&VII进行仿真分析和对比。结果表明,在相同振动激励条件下,SCET&VII接口电路的负载取用功率是SEH的2.65倍、SECE的1.76倍,且功率输出不受负载影响,同时实现了能量收集中的开关动作能量自给。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号